DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity: Potassic Sedimentary Rocks, Gale Crater

Abstract

The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. Furthermore, from ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations then reveals that the mean K2O abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocksmore » provides additional evidence for the chemical diversity of the crust exposed at Gale Crater.« less

Authors:
 [1];  [1];  [2];  [2];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [7];  [4];  [9];  [10];  [2];  [11];  [12];  [4];  [13] more »;  [2];  [14];  [2];  [1];  [15];  [6];  [2];  [16];  [17];  [18] « less
  1. Univ. of Nantes (CNRS-UMR) (France). Lab. of Planetology and Geodynamics
  2. Inst. for Research in Astrophysics and Planetology, Toulouse (France)
  3. Inst. for Research in Astrophysics and Planetology, Toulouse (France). Inst. of Optical Sensor Systems
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  5. Univ. of California, Davis, CA (United States). Earth and Planetary Sciences
  6. Univ. of Lorraine, Nancy (France). GeoRessources
  7. California Inst. of Technology (CalTech), Pasadena, CA (United States). Jet Propulsion Lab.
  8. U.S. Geological Survey, Flagstaff, AZ (United States). Astrogeology Science Center
  9. Lyon Lab. of Geology (France)
  10. Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean and Atmospheric Sciences
  11. California Inst. of Technology (CalTech), Pasadena, CA (United States). Division of Geologic and Planetary Sciences
  12. Imperial College London, London (United Kingdom)
  13. Laboratoire de Planétologie et Géodynamique, LPG-Nantes, UMR CNRS 6112, Université de Nantes, Nantes France
  14. State Univ. of New York (SUNY), Stony Brook, NY (United States). Dept. of Geosciences
  15. Univ. of New Mexico, Albuquerque, NM (United States). Inst. of Meteroritics
  16. Western Washington Univ., Bellingham, WA (United States). Geology Dept.
  17. Natural Museum of History, Paris (France). Lab. of Mineralogy & Cosmochemistry of the Museum (LMCM)
  18. Lunar and Planetary Inst., Houston TX (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
National Aeronautics and Space Administration (NASA)
OSTI Identifier:
1417817
Report Number(s):
LA-UR-17-27707
Journal ID: ISSN 2169-9097
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research. Planets
Additional Journal Information:
Journal Volume: 121; Journal Issue: 5; Journal ID: ISSN 2169-9097
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; Planetary Sciences

Citation Formats

Le Deit, L., Mangold, N., Forni, O., Cousin, A., Lasue, J., Schröder, S., Wiens, R. C., Sumner, D., Fabre, C., Stack, K. M., Anderson, R. B., Blaney, D., Clegg, S., Dromart, G., Fisk, M., Gasnault, O., Grotzinger, J. P., Gupta, S., Lanza, N., Le Mouélic, S., Maurice, S., McLennan, S. M., Meslin, P. -Y., Nachon, M., Newsom, H., Payré, V., Rapin, W., Rice, M., Sautter, V., and Treiman, A. H. The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity: Potassic Sedimentary Rocks, Gale Crater. United States: N. p., 2016. Web. doi:10.1002/2015JE004987.
Le Deit, L., Mangold, N., Forni, O., Cousin, A., Lasue, J., Schröder, S., Wiens, R. C., Sumner, D., Fabre, C., Stack, K. M., Anderson, R. B., Blaney, D., Clegg, S., Dromart, G., Fisk, M., Gasnault, O., Grotzinger, J. P., Gupta, S., Lanza, N., Le Mouélic, S., Maurice, S., McLennan, S. M., Meslin, P. -Y., Nachon, M., Newsom, H., Payré, V., Rapin, W., Rice, M., Sautter, V., & Treiman, A. H. The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity: Potassic Sedimentary Rocks, Gale Crater. United States. https://doi.org/10.1002/2015JE004987
Le Deit, L., Mangold, N., Forni, O., Cousin, A., Lasue, J., Schröder, S., Wiens, R. C., Sumner, D., Fabre, C., Stack, K. M., Anderson, R. B., Blaney, D., Clegg, S., Dromart, G., Fisk, M., Gasnault, O., Grotzinger, J. P., Gupta, S., Lanza, N., Le Mouélic, S., Maurice, S., McLennan, S. M., Meslin, P. -Y., Nachon, M., Newsom, H., Payré, V., Rapin, W., Rice, M., Sautter, V., and Treiman, A. H. Fri . "The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity: Potassic Sedimentary Rocks, Gale Crater". United States. https://doi.org/10.1002/2015JE004987. https://www.osti.gov/servlets/purl/1417817.
@article{osti_1417817,
title = {The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity: Potassic Sedimentary Rocks, Gale Crater},
author = {Le Deit, L. and Mangold, N. and Forni, O. and Cousin, A. and Lasue, J. and Schröder, S. and Wiens, R. C. and Sumner, D. and Fabre, C. and Stack, K. M. and Anderson, R. B. and Blaney, D. and Clegg, S. and Dromart, G. and Fisk, M. and Gasnault, O. and Grotzinger, J. P. and Gupta, S. and Lanza, N. and Le Mouélic, S. and Maurice, S. and McLennan, S. M. and Meslin, P. -Y. and Nachon, M. and Newsom, H. and Payré, V. and Rapin, W. and Rice, M. and Sautter, V. and Treiman, A. H.},
abstractNote = {The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. Furthermore, from ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations then reveals that the mean K2O abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater.},
doi = {10.1002/2015JE004987},
journal = {Journal of Geophysical Research. Planets},
number = 5,
volume = 121,
place = {United States},
year = {Fri May 13 00:00:00 EDT 2016},
month = {Fri May 13 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 59 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Independent component analysis classification of laser induced breakdown spectroscopy spectra
journal, August 2013

  • Forni, Olivier; Maurice, Sylvestre; Gasnault, Olivier
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 86
  • DOI: 10.1016/j.sab.2013.05.003

ChemCam results from the Shaler outcrop in Gale crater, Mars
journal, March 2015


Trace element geochemistry (Li, Ba, Sr, and Rb) using Curiosity 's ChemCam: Early results for Gale crater from Bradbury Landing Site to Rocknest : TRACE ELEMENT RESULTS FOR GALE CRATER
journal, January 2014

  • Ollila, Ann M.; Newsom, Horton E.; Clark, Benton
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 1
  • DOI: 10.1002/2013JE004517

Segregation of olivine grains in volcanic sands in Iceland and implications for Mars
journal, October 2011


Grain size and hydrodynamic sorting controls on the composition of basaltic sediments: Implications for interpreting martian soils
journal, August 2015

  • Fedo, Christopher M.; McGlynn, Ian O.; McSween, Harry Y.
  • Earth and Planetary Science Letters, Vol. 423
  • DOI: 10.1016/j.epsl.2015.03.052

Chemistry and texture of the rocks at Rocknest, Gale Crater: Evidence for sedimentary origin and diagenetic alteration: ROCKNEST CHEMISTRY AND TEXTURE
journal, September 2014

  • Blaney, D. L.; Wiens, R. C.; Maurice, S.
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 9
  • DOI: 10.1002/2013JE004590

Petrography and composition of Martian regolith breccia meteorite Northwest Africa 7475
journal, February 2015

  • Wittmann, Axel; Korotev, Randy L.; Jolliff, Bradley L.
  • Meteoritics & Planetary Science, Vol. 50, Issue 2
  • DOI: 10.1111/maps.12425

A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars
journal, December 2013


K 2 O-rich trapped melt in olivine in the Nakhla meteorite: Implications for petrogenesis of nakhlites and evolution of the Martian mantle
journal, December 2013

  • Goodrich, Cyrena Anne; Treiman, Allan H.; Filiberto, Justin
  • Meteoritics & Planetary Science, Vol. 48, Issue 12
  • DOI: 10.1111/maps.12226

Hydrogen detection with ChemCam at Gale crater
journal, March 2015


Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars
journal, September 2013


Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars
journal, December 2013


Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover
journal, April 2013

  • Wiens, R. C.; Maurice, S.; Lasue, J.
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 82
  • DOI: 10.1016/j.sab.2013.02.003

Origin and age of the earliest Martian crust from meteorite NWA 7533
journal, November 2013


Observation of > 5 wt % zinc at the Kimberley outcrop, Gale crater, Mars: ZN DETECTION AT KIMBERLEY WITH CHEMCAM
journal, March 2016

  • Lasue, J.; Clegg, S. M.; Forni, O.
  • Journal of Geophysical Research: Planets, Vol. 121, Issue 3
  • DOI: 10.1002/2015JE004946

The ChemCam Remote Micro-Imager at Gale crater: Review of the first year of operations on Mars
journal, March 2015


The origin and evolution of the Peace Vallis fan system that drains to the Curiosity landing area, Gale Crater, Mars : Origin and evolution of Peace Vallis fan
journal, April 2014

  • Palucis, Marisa C.; Dietrich, William E.; Hayes, Alexander G.
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 4
  • DOI: 10.1002/2013JE004583

In situ evidence for continental crust on early Mars
journal, July 2015

  • Sautter, V.; Toplis, M. J.; Wiens, R. C.
  • Nature Geoscience, Vol. 8, Issue 8
  • DOI: 10.1038/ngeo2474

Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars
journal, October 2015


Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars
journal, March 2015

  • Mangold, N.; Forni, O.; Dromart, G.
  • Journal of Geophysical Research: Planets, Vol. 120, Issue 3
  • DOI: 10.1002/2014JE004681

Diagenesis and clay mineral formation at Gale Crater, Mars: Gale Crater Diagenesis
journal, January 2015

  • Bridges, J. C.; Schwenzer, S. P.; Leveille, R.
  • Journal of Geophysical Research: Planets, Vol. 120, Issue 1
  • DOI: 10.1002/2014JE004757

Authigenic K-feldspar in the Bromsgrove Sandstone Formation (Triassic) of ccntral England
journal, March 1982


Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater): CHEMIN: WINDJANA
journal, January 2016

  • Treiman, Allan H.; Bish, David L.; Vaniman, David T.
  • Journal of Geophysical Research: Planets, Vol. 121, Issue 1
  • DOI: 10.1002/2015JE004932

Composition of conglomerates analyzed by the Curiosity rover: Implications for Gale Crater crust and sediment sources: CONGLOMERATES COMPOSITION AT GALE CRATER
journal, March 2016

  • Mangold, N.; Thompson, L. M.; Forni, O.
  • Journal of Geophysical Research: Planets, Vol. 121, Issue 3
  • DOI: 10.1002/2015JE004977

The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description
journal, July 2012


Quantitative geochemical mapping of martian elemental provinces
journal, May 2010


Magmatic complexity on early Mars as seen through a combination of orbital, in-situ and meteorite data
journal, June 2016


In situ calibration using univariate analyses based on the onboard ChemCam targets: first prediction of Martian rock and soil compositions
journal, September 2014

  • Fabre, C.; Cousin, A.; Wiens, R. C.
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 99
  • DOI: 10.1016/j.sab.2014.03.014

Ancient plutonic processes on Mars inferred from the detection of possible anorthositic terrains
journal, November 2013

  • Carter, J.; Poulet, F.
  • Nature Geoscience, Vol. 6, Issue 12
  • DOI: 10.1038/ngeo1995

Prolonged magmatic activity on Mars inferred from the detection of felsic rocks
journal, November 2013

  • Wray, James J.; Hansen, Sarah T.; Dufek, Josef
  • Nature Geoscience, Vol. 6, Issue 12
  • DOI: 10.1038/ngeo1994

The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests
journal, June 2012

  • Wiens, Roger C.; Maurice, Sylvestre; Barraclough, Bruce
  • Space Science Reviews, Vol. 170, Issue 1-4
  • DOI: 10.1007/s11214-012-9902-4

The Petrochemistry of Jake_M: A Martian Mugearite
journal, September 2013


Bulk composition and early differentiation of Mars
journal, December 2006

  • Taylor, G. Jeffrey; Boynton, W.; Brückner, J.
  • Journal of Geophysical Research, Vol. 112, Issue E3
  • DOI: 10.1029/2005JE002645

High manganese concentrations in rocks at Gale crater, Mars
journal, August 2014

  • Lanza, Nina L.; Fischer, Woodward W.; Wiens, Roger C.
  • Geophysical Research Letters, Vol. 41, Issue 16
  • DOI: 10.1002/2014GL060329

Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars
journal, January 2007

  • Boynton, W. V.; Taylor, G. J.; Evans, L. G.
  • Journal of Geophysical Research, Vol. 112, Issue E12
  • DOI: 10.1029/2007JE002887

Alkalic parental magmas for chassignites?
journal, June 2007


Volatiles on Earth and Mars: A comparison
journal, August 1987


First detection of fluorine on Mars: Implications for Gale Crater's geochemistry: First detection of fluorine on Mars
journal, February 2015

  • Forni, Olivier; Gaft, Michael; Toplis, Michael J.
  • Geophysical Research Letters, Vol. 42, Issue 4
  • DOI: 10.1002/2014GL062742

Martian Fluvial Conglomerates at Gale Crater
journal, May 2013

  • Williams, R. M. E.; Grotzinger, J. P.; Dietrich, W. E.
  • Science, Vol. 340, Issue 6136
  • DOI: 10.1126/science.1237317

The central uplift of Ritchey crater, Mars
journal, May 2015


Works referencing / citing this record:

AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use
journal, June 2017