skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrochemical Reduction Properties of Extended Space Charge InGaP and GaP Epitaxial Layers

Abstract

Two lattice-matched epitaxial III-V phosphide films of thicknesses between 400 and 500 nm are grown by metal-organic chemical vapor deposition: InGaP on GaAs and GaP on Si. These structures are designed as photocathodes for solar-driven chemical reduction processes such as the hydrogen evolution reaction (HER) and CO2 reduction into higher-order hydrocarbons. By using p+ substrates and undoped epitaxial layers, an extended space-charge active region is achieved in the electrode with a design analogous to a p-i-n solar cell. When in contact with the methyl viologen MV+ / + + redox couple, the InGaP/GaAs and GaP/Si cathodes generate a photovoltage of 388 mV and 274 mV, respectively, under 1 sun illumination. Incident photon-to-current efficiency (IPCE) measurements confirm that the undoped active layers are exclusively performing light absorption and minority carrier diffusion-based charge transfer of high-energy photons. This shows that performance can be significantly boosted with lower-doped substrates. The InGaP/GaAs and GaP/Si electrodes are shown to drive the HER at saturation photocurrent densities of 9.05 mA/cm2 and 2.34 mA/cm2, respectively, under 1 sun illumination without a co-catalyst and under a large reduction bias. As a result, thicker films did not show a corresponding increased performance, and can be explained through understanding ofmore » crystalline defects and the electrostatics of the junctions.« less

Authors:
 [1];  [1];  [1]
  1. Stanford Univ., Stanford, CA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center on Nanostructuring for Efficient Energy Conversion (CNEEC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1370006
Grant/Contract Number:  
SC0001060
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 163; Journal Issue: 8; Related Information: CNEEC partners with Stanford University (lead); Carnegie Institution at Stanford; Technical University of Denmark; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Parameshwaran, Vijay, Xu, Xiaoqing, and Clemens, Bruce. Electrochemical Reduction Properties of Extended Space Charge InGaP and GaP Epitaxial Layers. United States: N. p., 2016. Web. doi:10.1149/2.1341608jes.
Parameshwaran, Vijay, Xu, Xiaoqing, & Clemens, Bruce. Electrochemical Reduction Properties of Extended Space Charge InGaP and GaP Epitaxial Layers. United States. doi:10.1149/2.1341608jes.
Parameshwaran, Vijay, Xu, Xiaoqing, and Clemens, Bruce. Fri . "Electrochemical Reduction Properties of Extended Space Charge InGaP and GaP Epitaxial Layers". United States. doi:10.1149/2.1341608jes. https://www.osti.gov/servlets/purl/1370006.
@article{osti_1370006,
title = {Electrochemical Reduction Properties of Extended Space Charge InGaP and GaP Epitaxial Layers},
author = {Parameshwaran, Vijay and Xu, Xiaoqing and Clemens, Bruce},
abstractNote = {Two lattice-matched epitaxial III-V phosphide films of thicknesses between 400 and 500 nm are grown by metal-organic chemical vapor deposition: InGaP on GaAs and GaP on Si. These structures are designed as photocathodes for solar-driven chemical reduction processes such as the hydrogen evolution reaction (HER) and CO2 reduction into higher-order hydrocarbons. By using p+ substrates and undoped epitaxial layers, an extended space-charge active region is achieved in the electrode with a design analogous to a p-i-n solar cell. When in contact with the methyl viologen MV+ / + + redox couple, the InGaP/GaAs and GaP/Si cathodes generate a photovoltage of 388 mV and 274 mV, respectively, under 1 sun illumination. Incident photon-to-current efficiency (IPCE) measurements confirm that the undoped active layers are exclusively performing light absorption and minority carrier diffusion-based charge transfer of high-energy photons. This shows that performance can be significantly boosted with lower-doped substrates. The InGaP/GaAs and GaP/Si electrodes are shown to drive the HER at saturation photocurrent densities of 9.05 mA/cm2 and 2.34 mA/cm2, respectively, under 1 sun illumination without a co-catalyst and under a large reduction bias. As a result, thicker films did not show a corresponding increased performance, and can be explained through understanding of crystalline defects and the electrostatics of the junctions.},
doi = {10.1149/2.1341608jes},
journal = {Journal of the Electrochemical Society},
number = 8,
volume = 163,
place = {United States},
year = {2016},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Band diagram of a p-type semiconductor in contact with a redox couple A/A. (b) Proposed band diagram of a p+ semiconductor, with an intrinsic thin epitaxial layer, in contact with a redox couple A/A. The intrinsic thin layer creates a space charge region that can effectively absorbmore » photons and extract electron-hole pairs. The redox couple A/A, for reduction studies, is MV++/+ for non-aqueous experiments and H+/H2 for aqueous experiments.« less

Save / Share:

Works referenced in this record:

Efficient Solar Water Splitting, Exemplified by RuO 2 -Catalyzed AlGaAs/Si Photoelectrolysis
journal, September 2000

  • Licht, S.; Wang, B.; Mukerji, S.
  • The Journal of Physical Chemistry B, Vol. 104, Issue 38
  • DOI: 10.1021/jp002083b

Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation
journal, May 2014


Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation
journal, June 2011

  • Chen, Yi Wei; Prange, Jonathan D.; Dühnen, Simon
  • Nature Materials, Vol. 10, Issue 7
  • DOI: 10.1038/nmat3047

Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces
journal, August 2014

  • Kuhl, Kendra P.; Hatsukade, Toru; Cave, Etosha R.
  • Journal of the American Chemical Society, Vol. 136, Issue 40
  • DOI: 10.1021/ja505791r

Modeling Practical Performance Limits of Photoelectrochemical Water Splitting Based on the Current State of Materials Research
journal, April 2014


Phosphonic Acid Modification of GaInP 2 Photocathodes Toward Unbiased Photoelectrochemical Water Splitting
journal, May 2015

  • MacLeod, Bradley A.; Steirer, K. Xerxes; Young, James L.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 21
  • DOI: 10.1021/acsami.5b01814

Surface Chemistry of GaP(001) and InP(001) in Contact with Water
journal, December 2013

  • Wood, Brandon C.; Schwegler, Eric; Choi, Woon Ih
  • The Journal of Physical Chemistry C, Vol. 118, Issue 2
  • DOI: 10.1021/jp4098843

Photoelectrochemical Characterization and Durability Analysis of GaInPN Epilayers
journal, January 2008

  • Deutsch, Todd G.; Head, Jeff L.; Turner, John A.
  • Journal of The Electrochemical Society, Vol. 155, Issue 9
  • DOI: 10.1149/1.2946478

Stability of GaInP2 in H2SO4 Solution for Photoelectrochemical Water Splitting
conference, January 2007

  • Wang, Heli; Turner, John
  • 209th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.2409036

Suppression of Band Edge Migration at the p-GaInP 2 /H 2 O Interface under Illumination via Catalysis
journal, July 2000

  • Bansal, Ashish; Turner, John A.
  • The Journal of Physical Chemistry B, Vol. 104, Issue 28
  • DOI: 10.1021/jp000387s

Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst
journal, December 2015

  • Gu, Jing; Yan, Yong; Young, James L.
  • Nature Materials, Vol. 15, Issue 4
  • DOI: 10.1038/nmat4511

An Efficient Self-Driven CM-n-TiO2 / p-GaInP2 Photoelectrochemical Cell for Water Splitting
conference, January 2008

  • Ingler Jr., William B.; Shaban, Yasser A.; Khan, Shahed U.
  • 214th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.2983161

Direct Water Splitting under Visible Light with Nanostructured Hematite and WO[sub 3] Photoanodes and a GaInP[sub 2] Photocathode
journal, January 2008

  • Wang, Heli; Deutsch, Todd; Turner, John A.
  • Journal of The Electrochemical Society, Vol. 155, Issue 5
  • DOI: 10.1149/1.2888477

Photofunctional Construct That Interfaces Molecular Cobalt-Based Catalysts for H 2 Production to a Visible-Light-Absorbing Semiconductor
journal, July 2013

  • Krawicz, Alexandra; Yang, Jinhui; Anzenberg, Eitan
  • Journal of the American Chemical Society, Vol. 135, Issue 32
  • DOI: 10.1021/ja404158r

Dye-Sensitized Photocathodes: Efficient Light-Stimulated Hole Injection into p-GaP Under Depletion Conditions
journal, June 2012

  • Chitambar, Michelle; Wang, Zhijie; Liu, Yiming
  • Journal of the American Chemical Society, Vol. 134, Issue 25
  • DOI: 10.1021/ja304019n

Macroporous n-GaP in Nonaqueous Regenerative Photoelectrochemical Cells
journal, June 2009

  • Price, Michelle J.; Maldonado, Stephen
  • The Journal of Physical Chemistry C, Vol. 113, Issue 28
  • DOI: 10.1021/jp9044308

Preparation and Photoelectrochemical Activity of Macroporous p-GaP(100)
journal, January 2010

  • Hagedorn, Kevin; Collins, Sean; Maldonado, Stephen
  • Journal of The Electrochemical Society, Vol. 157, Issue 11
  • DOI: 10.1149/1.3490764

Solar Hydrogen Generation with Wide-Band-Gap Semiconductors: GaP(100) Photoelectrodes and Surface Modification
journal, August 2012

  • Kaiser, Bernhard; Fertig, Dominic; Ziegler, Jürgen
  • ChemPhysChem, Vol. 13, Issue 12
  • DOI: 10.1002/cphc.201200432

Formation of a p–n heterojunction on GaP photocathodes for H 2 production providing an open-circuit voltage of 710 mV
journal, January 2014

  • Malizia, Mauro; Seger, Brian; Chorkendorff, Ib
  • J. Mater. Chem. A, Vol. 2, Issue 19
  • DOI: 10.1039/C4TA00752B

Photoelectrochemical Behavior of Planar and Microwire-Array Si|GaP Electrodes
journal, June 2012

  • Strandwitz, Nicholas C.; Turner-Evans, Daniel B.; Tamboli, Adele C.
  • Advanced Energy Materials, Vol. 2, Issue 9
  • DOI: 10.1002/aenm.201100728

Low-acceptor-concentration GaInNAs grown by molecular-beam epitaxy for high-current p-i-n solar cell applications
journal, November 2005

  • Ptak, A. J.; Friedman, D. J.; Kurtz, Sarah
  • Journal of Applied Physics, Vol. 98, Issue 9, Article No. 094501
  • DOI: 10.1063/1.2113414

Amorphous Si Thin Film Based Photocathodes with High Photovoltage for Efficient Hydrogen Production
journal, October 2013

  • Lin, Yongjing; Battaglia, Corsin; Boccard, Mathieu
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl403265k

Operation of lightly doped Si microwires under high-level injection conditions
journal, January 2014

  • Santori, Elizabeth A.; Strandwitz, Nicholas C.; Grimm, Ronald L.
  • Energy Environ. Sci., Vol. 7, Issue 7
  • DOI: 10.1039/C4EE00202D

Characterization of the Microstructure of GaP Films Grown on {111} Si by Liquid Phase Epitaxy
journal, October 2014

  • Huang, Susan R.; Lu, Xuesong; Barnett, Allen
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 21
  • DOI: 10.1021/am503448g

X-ray diffraction analysis of step-graded InxGa1−xAs buffer layers grown by molecular beam epitaxy
journal, May 2011


Effect of misfit strain on physical properties of InGaP grown by metalorganic molecular‐beam epitaxy
journal, July 1990

  • Ozasa, Kazunari; Yuri, Masaaki; Tanaka, Shigehisa
  • Journal of Applied Physics, Vol. 68, Issue 1
  • DOI: 10.1063/1.347100

The importance of lattice mismatch in the growth of Ga x In 1− x P epitaxial crystals
journal, August 1972

  • Stringfellow, G. B.
  • Journal of Applied Physics, Vol. 43, Issue 8
  • DOI: 10.1063/1.1661737

Energy band‐gap shift with elastic strain in Ga x In 1− x P epitaxial layers on (001) GaAs substrates
journal, April 1983

  • Asai, Hiromitsu; Oe, Kunishige
  • Journal of Applied Physics, Vol. 54, Issue 4
  • DOI: 10.1063/1.332252

Highly carbon‐doped p ‐type Ga 0.5 In 0.5 As and Ga 0.5 In 0.5 P by carbon tetrachloride in gas‐source molecular beam epitaxy
journal, November 1991

  • Chin, T. P.; Kirchner, P. D.; Woodall, J. M.
  • Applied Physics Letters, Vol. 59, Issue 22
  • DOI: 10.1063/1.105835

Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays
journal, January 2011

  • Boettcher, Shannon W.; Warren, Emily L.; Putnam, Morgan C.
  • Journal of the American Chemical Society, Vol. 133, Issue 5, p. 1216-1219
  • DOI: 10.1021/ja108801m

Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials
journal, August 2014

  • Benck, Jesse D.; Lee, Sang Chul; Fong, Kara D.
  • Advanced Energy Materials, Vol. 4, Issue 18
  • DOI: 10.1002/aenm.201400739

pH-Independent, 520 mV Open-Circuit Voltages of Si/Methyl Viologen 2+/+ Contacts Through Use of Radial n + p-Si Junction Microwire Array Photoelectrodes
journal, December 2010

  • Warren, Emily L.; Boettcher, Shannon W.; Walter, Michael G.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 2
  • DOI: 10.1021/jp109147p

Intrinsic Optical Absorption of Gallium Phosphide between 2.33 and 3.12 eV
journal, August 1967

  • Dean, P. J.; Kaminsky, G.; Zetterstrom, R. B.
  • Journal of Applied Physics, Vol. 38, Issue 9
  • DOI: 10.1063/1.1710170

Energy-Conversion Properties of Vapor-Liquid-Solid-Grown Silicon Wire-Array Photocathodes
journal, January 2010

  • Boettcher, S. W.; Spurgeon, J. M.; Putnam, M. C.
  • Science, Vol. 327, Issue 5962, p. 185-187
  • DOI: 10.1126/science.1180783

Optical Absorption Enhancement in Freestanding GaAs Thin Film Nanopyramid Arrays
journal, May 2012

  • Liang, Dong; Huo, Yijie; Kang, Yangsen
  • Advanced Energy Materials, Vol. 2, Issue 10
  • DOI: 10.1002/aenm.201200022

Fundamental limit of nanophotonic light trapping in solar cells
journal, September 2010

  • Yu, Zongfu; Raman, Aaswath; Fan, Shanhui
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 41, p. 17491-17496
  • DOI: 10.1073/pnas.1008296107