DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Identifying the Active Surfaces of Electrochemically Tuned LiCoO2 for Oxygen Evolution Reaction

Abstract

Identification of active sites for catalytic processes has both fundamental and technological implications for rational design of future catalysts. Herein, we study the active surfaces of layered lithium cobalt oxide (LCO) for the oxygen evolution reaction (OER) using the enhancement effect of electrochemical delithiation (De-LCO). Our theoretical results indicate that the most stable (0001) surface has a very large overpotential for OER independent of lithium content. In contrast, edge sites such as the nonpolar (1120) and polar (0112) surfaces are predicted to be highly active and dependent on (de)lithiation. The effect of lithium extraction from LCO on the surfaces and their OER activities can be understood by the increase of Co4+ sites relative to Co3+ and by the shift of active oxygen 2p states. Experimentally, it is demonstrated that LCO nanosheets, which dominantly expose the (0001) surface show negligible OER enhancement upon delithiation. However, a noticeable increase in OER activity (~0.1 V in overpotential shift at 10 mA cm–2) is observed for the LCO nanoparticles, where the basal plane is greatly diminished to expose the edge sites, consistent with the theoretical simulations. In addition, we find that the OER activity of De-LCO nanosheets can be improved if we adopt anmore » acid etching method on LCO to create more active edge sites, which in turn provides a strong evidence for the theoretical indication.« less

Authors:
ORCiD logo [1];  [1];  [1];  [2];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [3];  [3]
  1. Stanford Univ., Stanford, CA (United States)
  2. Harvard Univ., Cambridge, MA (United States)
  3. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1368758
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 139; Journal Issue: 17; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Lu, Zhiyi, Chen, Guangxu, Li, Yanbin, Wang, Haotian, Xie, Jin, Liao, Lei, Liu, Chong, Liu, Yayuan, Wu, Tong, Li, Yuzhang, Luntz, Alan C., Bajdich, Michal, and Cui, Yi. Identifying the Active Surfaces of Electrochemically Tuned LiCoO2 for Oxygen Evolution Reaction. United States: N. p., 2017. Web. doi:10.1021/jacs.7b02622.
Lu, Zhiyi, Chen, Guangxu, Li, Yanbin, Wang, Haotian, Xie, Jin, Liao, Lei, Liu, Chong, Liu, Yayuan, Wu, Tong, Li, Yuzhang, Luntz, Alan C., Bajdich, Michal, & Cui, Yi. Identifying the Active Surfaces of Electrochemically Tuned LiCoO2 for Oxygen Evolution Reaction. United States. https://doi.org/10.1021/jacs.7b02622
Lu, Zhiyi, Chen, Guangxu, Li, Yanbin, Wang, Haotian, Xie, Jin, Liao, Lei, Liu, Chong, Liu, Yayuan, Wu, Tong, Li, Yuzhang, Luntz, Alan C., Bajdich, Michal, and Cui, Yi. Tue . "Identifying the Active Surfaces of Electrochemically Tuned LiCoO2 for Oxygen Evolution Reaction". United States. https://doi.org/10.1021/jacs.7b02622. https://www.osti.gov/servlets/purl/1368758.
@article{osti_1368758,
title = {Identifying the Active Surfaces of Electrochemically Tuned LiCoO2 for Oxygen Evolution Reaction},
author = {Lu, Zhiyi and Chen, Guangxu and Li, Yanbin and Wang, Haotian and Xie, Jin and Liao, Lei and Liu, Chong and Liu, Yayuan and Wu, Tong and Li, Yuzhang and Luntz, Alan C. and Bajdich, Michal and Cui, Yi},
abstractNote = {Identification of active sites for catalytic processes has both fundamental and technological implications for rational design of future catalysts. Herein, we study the active surfaces of layered lithium cobalt oxide (LCO) for the oxygen evolution reaction (OER) using the enhancement effect of electrochemical delithiation (De-LCO). Our theoretical results indicate that the most stable (0001) surface has a very large overpotential for OER independent of lithium content. In contrast, edge sites such as the nonpolar (1120) and polar (0112) surfaces are predicted to be highly active and dependent on (de)lithiation. The effect of lithium extraction from LCO on the surfaces and their OER activities can be understood by the increase of Co4+ sites relative to Co3+ and by the shift of active oxygen 2p states. Experimentally, it is demonstrated that LCO nanosheets, which dominantly expose the (0001) surface show negligible OER enhancement upon delithiation. However, a noticeable increase in OER activity (~0.1 V in overpotential shift at 10 mA cm–2) is observed for the LCO nanoparticles, where the basal plane is greatly diminished to expose the edge sites, consistent with the theoretical simulations. In addition, we find that the OER activity of De-LCO nanosheets can be improved if we adopt an acid etching method on LCO to create more active edge sites, which in turn provides a strong evidence for the theoretical indication.},
doi = {10.1021/jacs.7b02622},
journal = {Journal of the American Chemical Society},
number = 17,
volume = 139,
place = {United States},
year = {Tue Apr 18 00:00:00 EDT 2017},
month = {Tue Apr 18 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 123 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electric Field Effect in Atomically Thin Carbon Films
journal, October 2004


The rise of graphene
journal, March 2007

  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors
journal, February 2008


Single-layer MoS2 transistors
journal, January 2011

  • Radisavljevic, B.; Radenovic, A.; Brivio, J.
  • Nature Nanotechnology, Vol. 6, Issue 3, p. 147-150
  • DOI: 10.1038/nnano.2010.279

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
journal, November 2012

  • Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras
  • Nature Nanotechnology, Vol. 7, Issue 11, p. 699-712
  • DOI: 10.1038/nnano.2012.193

Physical and chemical tuning of two-dimensional transition metal dichalcogenides
journal, January 2015

  • Wang, Haotian; Yuan, Hongtao; Sae Hong, Seung
  • Chemical Society Reviews, Vol. 44, Issue 9
  • DOI: 10.1039/C4CS00287C

High Electrochemical Selectivity of Edge versus Terrace Sites in Two-Dimensional Layered MoS 2 Materials
journal, November 2014

  • Wang, Haotian; Zhang, Qianfan; Yao, Hongbin
  • Nano Letters, Vol. 14, Issue 12
  • DOI: 10.1021/nl503730c

The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
journal, April 2013

  • Chhowalla, Manish; Shin, Hyeon Suk; Eda, Goki
  • Nature Chemistry, Vol. 5, Issue 4, p. 263-275
  • DOI: 10.1038/nchem.1589

Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics
journal, October 2014


Biomimetic Hydrogen Evolution:  MoS 2 Nanoparticles as Catalyst for Hydrogen Evolution
journal, April 2005

  • Hinnemann, Berit; Moses, Poul Georg; Bonde, Jacob
  • Journal of the American Chemical Society, Vol. 127, Issue 15
  • DOI: 10.1021/ja0504690

Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007

  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483

An Investigation of Thin-Film Ni–Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen
journal, August 2013

  • Louie, Mary W.; Bell, Alexis T.
  • Journal of the American Chemical Society, Vol. 135, Issue 33
  • DOI: 10.1021/ja405351s

Enhanced Activity of Gold-Supported Cobalt Oxide for the Electrochemical Evolution of Oxygen
journal, April 2011

  • Yeo, Boon Siang; Bell, Alexis T.
  • Journal of the American Chemical Society, Vol. 133, Issue 14
  • DOI: 10.1021/ja200559j

Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction
journal, October 2013

  • McCrory, Charles C. L.; Jung, Suho; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 135, Issue 45
  • DOI: 10.1021/ja407115p

Crystal plane-dependent electrocatalytic activity of Co3O4 toward oxygen evolution reaction
journal, July 2015


Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water
journal, August 2013

  • Bajdich, Michal; García-Mota, Mónica; Vojvodic, Aleksandra
  • Journal of the American Chemical Society, Vol. 135, Issue 36
  • DOI: 10.1021/ja405997s

Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting
journal, January 2015

  • Friebel, Daniel; Louie, Mary W.; Bajdich, Michal
  • Journal of the American Chemical Society, Vol. 137, Issue 3
  • DOI: 10.1021/ja511559d

Mechanism and Activity of Water Oxidation on Selected Surfaces of Pure and Fe-Doped NiO x
journal, March 2014

  • Li, Ye-Fei; Selloni, Annabella
  • ACS Catalysis, Vol. 4, Issue 4
  • DOI: 10.1021/cs401245q

Role of Strain and Conductivity in Oxygen Electrocatalysis on LaCoO 3 Thin Films
journal, January 2015

  • Stoerzinger, Kelsey A.; Choi, Woo Seok; Jeen, Hyoungjeen
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 3
  • DOI: 10.1021/jz502692a

Enhancing Perovskite Electrocatalysis through Strain Tuning of the Oxygen Deficiency
journal, June 2016

  • Petrie, Jonathan R.; Jeen, Hyoungjeen; Barron, Sara C.
  • Journal of the American Chemical Society, Vol. 138, Issue 23
  • DOI: 10.1021/jacs.6b03520

Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction
journal, November 2013

  • Wang, H.; Lu, Z.; Xu, S.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 49
  • DOI: 10.1073/pnas.1316792110

Electrochemical Tuning of MoS 2 Nanoparticles on Three-Dimensional Substrate for Efficient Hydrogen Evolution
journal, April 2014

  • Wang, Haotian; Lu, Zhiyi; Kong, Desheng
  • ACS Nano, Vol. 8, Issue 5
  • DOI: 10.1021/nn500959v

Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting
journal, June 2015

  • Wang, Haotian; Lee, Hyun-Wook; Deng, Yong
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8261

Electrochemical tuning of olivine-type lithium transition-metal phosphates as efficient water oxidation catalysts
journal, January 2015

  • Liu, Yayuan; Wang, Haotian; Lin, Dingchang
  • Energy & Environmental Science, Vol. 8, Issue 6
  • DOI: 10.1039/C5EE01290B

Direct and continuous strain control of catalysts with tunable battery electrode materials
journal, November 2016


Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction
journal, July 2014

  • Lu, Zhiyi; Wang, Haotian; Kong, Desheng
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5345

Tailoring the Morphology of LiCoO 2 : A First Principles Study
journal, August 2009

  • Kramer, Denis; Ceder, Gerbrand
  • Chemistry of Materials, Vol. 21, Issue 16
  • DOI: 10.1021/cm9008943

Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
journal, November 2004

  • Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 46
  • DOI: 10.1021/jp047349j

NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes
journal, July 2016


Changes in the crystal and electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-intercalation
journal, January 2009

  • Laubach, Sonja; Laubach, Stefan; Schmidt, Peter C.
  • Physical Chemistry Chemical Physics, Vol. 11, Issue 17
  • DOI: 10.1039/b901200a

Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides
journal, July 1997


Nonrigid Band Behavior of the Electronic Structure of LiCoO 2 Thin Film during Electrochemical Li Deintercalation
journal, June 2014

  • Ensling, D.; Cherkashinin, G.; Schmid, S.
  • Chemistry of Materials, Vol. 26, Issue 13
  • DOI: 10.1021/cm501480b

Electronic Structure of Chemically-Delithiated LiCoO 2 Studied by Electron Energy-Loss Spectrometry
journal, February 2002

  • Graetz, J.; Hightower, A.; Ahn, C. C.
  • The Journal of Physical Chemistry B, Vol. 106, Issue 6
  • DOI: 10.1021/jp0133283

LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries
journal, May 2012


Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in LixCoO2
journal, January 1992

  • Reimers, Jan N.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 139, Issue 8, p. 2091-2097
  • DOI: 10.1149/1.2221184

Single-crystal synthesis, structure refinement and electrical properties of Li 0.5 CoO 2
journal, September 2007


Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane steam electrolysis
journal, January 2014

  • Xu, Junyuan; Aili, David; Li, Qingfeng
  • Energy & Environmental Science, Vol. 7, Issue 2
  • DOI: 10.1039/c3ee41438h

An Efficient Three-Dimensional Oxygen Evolution Electrode
journal, April 2013


Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis
journal, July 2014


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Ab initiomolecular dynamics for liquid metals
journal, January 1993


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Importance of Correlation in Determining Electrocatalytic Oxygen Evolution Activity on Cobalt Oxides
journal, September 2012

  • García-Mota, Mónica; Bajdich, Michal; Viswanathan, Venkatasubramanian
  • The Journal of Physical Chemistry C, Vol. 116, Issue 39
  • DOI: 10.1021/jp306303y

Oxidation energies of transition metal oxides within the GGA + U framework
journal, May 2006


Structure and electron density analysis of electrochemically and chemically delithiated LiCoO2 single crystals
journal, January 2007

  • Takahashi, Yasuhiko; Kijima, Norihito; Dokko, Kaoru
  • Journal of Solid State Chemistry, Vol. 180, Issue 1, p. 313-321
  • DOI: 10.1016/j.jssc.2006.10.018

Works referencing / citing this record:

Physically Adsorbed Metal Ions in Porous Supports as Electrocatalysts for Oxygen Evolution Reaction
journal, February 2020

  • Yang, Liu; Liu, Huibing; Shen, Hangjia
  • Advanced Functional Materials, Vol. 30, Issue 12
  • DOI: 10.1002/adfm.201909889

Atomically thick Ni(OH) 2 nanomeshes for urea electrooxidation
journal, January 2019


Enhancing Electrocatalytic Water Splitting by Strain Engineering
journal, February 2019


Interpreting Tafel behavior of consecutive electrochemical reactions through combined thermodynamic and steady state microkinetic approaches
journal, January 2020

  • Mefford, J. Tyler; Zhao, Zhenghang; Bajdich, Michal
  • Energy & Environmental Science, Vol. 13, Issue 2
  • DOI: 10.1039/c9ee02697e

Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction
journal, May 2018

  • Xiao, Hai; Shin, Hyeyoung; Goddard, William A.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 23
  • DOI: 10.1073/pnas.1722034115

Exceptional oxygen evolution reactivities on CaCoO 3 and SrCoO 3
journal, August 2019


Single-Crystalline Ultrathin Co 3 O 4 Nanosheets with Massive Vacancy Defects for Enhanced Electrocatalysis
journal, September 2017


Integrated Ultrafine Co 0.85 Se in Carbon Nanofibers: An Efficient and Robust Bifunctional Catalyst for Oxygen Electrocatalysis
journal, November 2019


Lithium Electrochemical Tuning for Electrocatalysis
journal, September 2018


Short O–O separation in layered oxide Na 0.67 CoO 2 enables an ultrafast oxygen evolution reaction
journal, November 2019

  • Wang, Hao; Wu, Jinpeng; Dolocan, Andrei
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 47
  • DOI: 10.1073/pnas.1901046116

Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes
journal, January 2018

  • Xue, Yejian; Sun, Shanshan; Wang, Qin
  • Journal of Materials Chemistry A, Vol. 6, Issue 23
  • DOI: 10.1039/c7ta10569j

Electronic Structure Engineering of LiCoO 2 toward Enhanced Oxygen Electrocatalysis
journal, February 2019

  • Zheng, Xiaobo; Chen, Yaping; Zheng, Xusheng
  • Advanced Energy Materials, Vol. 9, Issue 16
  • DOI: 10.1002/aenm.201803482

Stabilizing Co 4+ Ions in Ultrathin Cobalt Oxide Nanosheets for Efficient Oxygen Evolution Reaction
journal, October 2018


Microwave-Assisted Synthesis of Co/CoO x Supported on Earth-Abundant Coal-Derived Carbon for Electrocatalysis of Oxygen Evolution
journal, January 2019

  • Pan, Haoran; Wu, Dongling; Huang, Xinning
  • Journal of The Electrochemical Society, Vol. 166, Issue 8
  • DOI: 10.1149/2.0281908jes

Catalysis-Hub.org, an open electronic structure database for surface reactions
journal, May 2019


Amorphous Co-doped MoO x nanospheres with a core–shell structure toward an effective oxygen evolution reaction
journal, January 2019

  • Guo, Chengying; Sun, Xu; Kuang, Xuan
  • Journal of Materials Chemistry A, Vol. 7, Issue 3
  • DOI: 10.1039/c8ta05552a

Electrochemically accessing ultrathin Co (oxy)-hydroxide nanosheets and operando identifying their active phase for the oxygen evolution reaction
journal, January 2019

  • Zhou, Jing; Wang, Yu; Su, Xiaozhi
  • Energy & Environmental Science, Vol. 12, Issue 2
  • DOI: 10.1039/c8ee03208d

Design of Multi‐Metallic‐Based Electrocatalysts for Enhanced Water Oxidation
journal, May 2019


In Situ Exfoliated, N-Doped, and Edge-Rich Ultrathin Layered Double Hydroxides Nanosheets for Oxygen Evolution Reaction
journal, November 2017

  • Wang, Yanyong; Xie, Chao; Zhang, Zhiyuan
  • Advanced Functional Materials, Vol. 28, Issue 4
  • DOI: 10.1002/adfm.201703363

Au Catalyzed Carbon Diffusion in Ni: A Case of Lattice Compatibility Stabilized Metastable Intermediates
journal, March 2018

  • Kang, Jian-Xin; Zhang, Dong-Feng; Guo, Gen-Cai
  • Advanced Functional Materials, Vol. 28, Issue 21
  • DOI: 10.1002/adfm.201706434

Trends in Oxygen Electrocatalysis of 3 d ‐Layered (Oxy)(Hydro)Oxides
journal, June 2019

  • Zhao, Zhenghang; Schlexer Lamoureux, Philomena; Kulkarni, Ambarish
  • ChemCatChem, Vol. 11, Issue 15
  • DOI: 10.1002/cctc.201900846

Cation deficiency associated with the chemical exfoliation of lithium cobalt oxide
journal, March 2019

  • Pachuta, Kevin G.; Pentzer, Emily B.; Sehirlioglu, Alp
  • Journal of the American Ceramic Society, Vol. 102, Issue 9
  • DOI: 10.1111/jace.16382

In Situ Exfoliated, N-Doped, and Edge-Rich Ultrathin Layered Double Hydroxides Nanosheets for Oxygen Evolution Reaction
journal, May 2018

  • Wang, Yanyong; Xie, Chao; Zhang, Zhiyuan
  • Advanced Functional Materials, Vol. 28, Issue 18
  • DOI: 10.1002/adfm.201800607

Impact of lithiated cobalt oxide and phosphate nanoparticles on rainbow trout gill epithelial cells
journal, November 2018


Cation insertion to break the activity/stability relationship for highly active oxygen evolution reaction catalyst
journal, March 2020

  • Yang, Chunzhen; Rousse, Gwenaëlle; Louise Svane, Katrine
  • Nature Communications, Vol. 11, Issue 1
  • DOI: 10.1038/s41467-020-15231-x