skip to main content

DOE PAGESDOE PAGES

Title: Short Hydrogen Bonds on Reconstructed Nanocrystal Surface Enhance Oxygen Evolution Activity

Here, water splitting to generate hydrogen and oxygen gas is critical to renewable energy technologies, including fuel cells and rechargeable metal–air batteries. The oxygen evolution reaction (OER) has long been the bottleneck of water splitting because of its high overpotential (η) and sluggish kinetics, and development of efficient, stable, and non-noble-metal-based OER catalysts has been an extensively studied topic. Here, we propose short hydrogen bonds on reconstructed nanocrystal surface to enhance oxygen evolution activity by investigating three types of phase structures (β II, β I, and γ 0) of Li 2CoSiO 4 (LCS) nanoparticles as OER electrocatalysts. Among them, the β II-LCS outperforms the previously reported Co-based catalysts and the state-of-the-art IrO 2 catalyst for OER in the alkaline condition. Our experiments combined with ab initio calculations indicated that due to the line-linked arrangement of Co active sites at the surface of β II-LCS, short hydrogen bonds (2.54 Å) are formed and linked into a network at the reconstructed surface by rotating the flexible CoO4 tetrahedra after surface delithiation, thus facilitating proton transfer and dissociation, leading to a unique dual-center catalytic pathway with low theoretical thermodynamic overpotential (0.35 eV) for the OER process.
Authors:
 [1] ;  [1] ;  [1] ;  [2] ; ORCiD logo [3] ;  [3] ;  [4] ; ORCiD logo [5] ; ORCiD logo [5] ; ORCiD logo [1]
  1. Peking Univ., Shenzhen (People's Republic of China)
  2. Peking Univ., Shenzhen (People's Republic of China); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  4. Case Western Reserve Univ., Cleveland, OH (United States)
  5. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Grant/Contract Number:
AC02-06CH11357
Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; nanocrystal surface; oxygen evolution activity; proton transfer and dissociation; short hydrogen bond; βII-Li2CoSiO4
OSTI Identifier:
1461413

Yang, Jinlong, Zheng, Jiaxin, Xu, Ming, Zhuo, Zengqing, Yang, Wanli, Wang, Lin -Wang, Dai, Liming, Lu, Jun, Amine, Khalil, and Pan, Feng. Short Hydrogen Bonds on Reconstructed Nanocrystal Surface Enhance Oxygen Evolution Activity. United States: N. p., Web. doi:10.1021/acscatal.7b02814.
Yang, Jinlong, Zheng, Jiaxin, Xu, Ming, Zhuo, Zengqing, Yang, Wanli, Wang, Lin -Wang, Dai, Liming, Lu, Jun, Amine, Khalil, & Pan, Feng. Short Hydrogen Bonds on Reconstructed Nanocrystal Surface Enhance Oxygen Evolution Activity. United States. doi:10.1021/acscatal.7b02814.
Yang, Jinlong, Zheng, Jiaxin, Xu, Ming, Zhuo, Zengqing, Yang, Wanli, Wang, Lin -Wang, Dai, Liming, Lu, Jun, Amine, Khalil, and Pan, Feng. 2017. "Short Hydrogen Bonds on Reconstructed Nanocrystal Surface Enhance Oxygen Evolution Activity". United States. doi:10.1021/acscatal.7b02814. https://www.osti.gov/servlets/purl/1461413.
@article{osti_1461413,
title = {Short Hydrogen Bonds on Reconstructed Nanocrystal Surface Enhance Oxygen Evolution Activity},
author = {Yang, Jinlong and Zheng, Jiaxin and Xu, Ming and Zhuo, Zengqing and Yang, Wanli and Wang, Lin -Wang and Dai, Liming and Lu, Jun and Amine, Khalil and Pan, Feng},
abstractNote = {Here, water splitting to generate hydrogen and oxygen gas is critical to renewable energy technologies, including fuel cells and rechargeable metal–air batteries. The oxygen evolution reaction (OER) has long been the bottleneck of water splitting because of its high overpotential (η) and sluggish kinetics, and development of efficient, stable, and non-noble-metal-based OER catalysts has been an extensively studied topic. Here, we propose short hydrogen bonds on reconstructed nanocrystal surface to enhance oxygen evolution activity by investigating three types of phase structures (βII, βI, and γ0) of Li2CoSiO4 (LCS) nanoparticles as OER electrocatalysts. Among them, the βII-LCS outperforms the previously reported Co-based catalysts and the state-of-the-art IrO2 catalyst for OER in the alkaline condition. Our experiments combined with ab initio calculations indicated that due to the line-linked arrangement of Co active sites at the surface of βII-LCS, short hydrogen bonds (2.54 Å) are formed and linked into a network at the reconstructed surface by rotating the flexible CoO4 tetrahedra after surface delithiation, thus facilitating proton transfer and dissociation, leading to a unique dual-center catalytic pathway with low theoretical thermodynamic overpotential (0.35 eV) for the OER process.},
doi = {10.1021/acscatal.7b02814},
journal = {ACS Catalysis},
number = 1,
volume = 8,
place = {United States},
year = {2017},
month = {11}
}