skip to main content

DOE PAGESDOE PAGES

Title: Characterization of small microfluidic valves for studies of mechanical properties of bacteria

Lab-on-a-chip platforms present many new opportunities to study bacterial cells and cellular assemblies. Here, the authors describe a new platform that allows us to apply uniaxial stress to individual bacterial cells while observing the cell and its subcellular assemblies using a high resolution optical microscope. The microfluidic chip consists of arrays of miniature pressure actuated valves. By placing a bacterium under one of such valves and partially closing the valve by externally applied pressure, the cell can be deformed. Although large pressure actuated valves used in integrated fluidic circuits have been extensively studied previously, here the authors downsize those microfluidic valves and use flow channels with rectangular cross-sections to maintain the bacteria in contact with cell culture medium during the experiments. The closure of these valves has not been characterized before. First, these valves are modeled using finite element analysis, and then compared the modeling results with the actual closing profiles of the valves, which is determined from absorption measurements. The measurements and modeling show with good agreement that the deflection of valves is a linear function of externally applied pressure and the deflection scales proportionally to the width of the flow channel. In addition to characterizing the valve, themore » authors show at a proof-of-principle level that it can be used to deform a bacterial cell at considerable magnitude. They found the largest deformations in 5 μm wide channels where the bacterial width and length increase by 1.6 and 1.25 times, respectively. Narrower and broader channels are less optimal for these studies. Finally, the platform presents a promising approach to probe, in a quantitative and systematic way, the mechanical properties of not only bacterial cells but possibly also yeast and other single-celled organisms.« less
Authors:
 [1] ;  [2] ;  [2] ;  [1] ;  [3] ;  [1]
  1. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy
  2. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mechanical, Aerospace and Biomedical Engineering
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)
Publication Date:
Grant/Contract Number:
AC05-00OR22725; MCB-1252890
Type:
Accepted Manuscript
Journal Name:
Journal of Vacuum Science and Technology. B, Nanotechnology and Microelectronics
Additional Journal Information:
Journal Volume: 33; Journal Issue: 6; Journal ID: ISSN 2166-2746
Publisher:
American Vacuum Society/AIP
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Channel flows; cell walls; polymers; bacteria; flow visualization
OSTI Identifier:
1265726