Piezoelectrically actuated ultrananocrystalline diamond tip array integrated with ferroelectric or phase change media for high-density memory
Abstract
A compact large density memory piezoactuated storage device and process for its fabrication provides an integrated microelectromechanical (MEMS) and/or nanoelectromechanical (NEMS) system and structure that features an integrated large density array of nanotips made of wear-resistant conductive ultrananocrystalline diamond (UNCD) in which the tips are actuated via a piezoelectric thin film integrated with the UNCD tips. The tips of the special piezoactuated storage device effectively contact an underlying metal layer (top electrode) deposited on a polarizable ferroelectric layer that is grown on top of another metal layer (bottom electrode) to form a ferroelectric capacitor. Information is imprinted in the ferroelectric layer by the polarization induced by the application of a voltage pulse between the top and bottom electrodes through the conductive UNCD tips. This integrated microelectromechanical (MEMS) and/or nanoelectromechanical (NEMS) system and structure can be efficiently used to imprint data in the ferroelectric layer for memory storage with high density in the gigabit (Gb) to terabit (Tb) range. An alternative memory media to the ferroelectric layer can be a phase change material that exhibits two orders of magnitude difference in electrical resistance between amorphous and crystalline phases.
- Inventors:
- Issue Date:
- Research Org.:
- Argonne National Lab. (ANL), Argonne, IL (United States)
- Sponsoring Org.:
- USDOE
- OSTI Identifier:
- 1531605
- Patent Number(s):
- 7602105
- Application Number:
- 11/789,344
- Assignee:
- UChicago Argonne, LLC (Argonne, IL)
- Patent Classifications (CPCs):
-
Y - NEW / CROSS SECTIONAL TECHNOLOGIES Y10 - TECHNICAL SUBJECTS COVERED BY FORMER USPC Y10T - TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
H - ELECTRICITY H01 - BASIC ELECTRIC ELEMENTS H01L - SEMICONDUCTOR DEVICES
- DOE Contract Number:
- AC02-06CH11357; W-31-109-ENG-38
- Resource Type:
- Patent
- Resource Relation:
- Patent File Date: 2007-04-24
- Country of Publication:
- United States
- Language:
- English
Citation Formats
Auciello, Orlando H. Piezoelectrically actuated ultrananocrystalline diamond tip array integrated with ferroelectric or phase change media for high-density memory. United States: N. p., 2009.
Web.
Auciello, Orlando H. Piezoelectrically actuated ultrananocrystalline diamond tip array integrated with ferroelectric or phase change media for high-density memory. United States.
Auciello, Orlando H. Tue .
"Piezoelectrically actuated ultrananocrystalline diamond tip array integrated with ferroelectric or phase change media for high-density memory". United States. https://www.osti.gov/servlets/purl/1531605.
@article{osti_1531605,
title = {Piezoelectrically actuated ultrananocrystalline diamond tip array integrated with ferroelectric or phase change media for high-density memory},
author = {Auciello, Orlando H.},
abstractNote = {A compact large density memory piezoactuated storage device and process for its fabrication provides an integrated microelectromechanical (MEMS) and/or nanoelectromechanical (NEMS) system and structure that features an integrated large density array of nanotips made of wear-resistant conductive ultrananocrystalline diamond (UNCD) in which the tips are actuated via a piezoelectric thin film integrated with the UNCD tips. The tips of the special piezoactuated storage device effectively contact an underlying metal layer (top electrode) deposited on a polarizable ferroelectric layer that is grown on top of another metal layer (bottom electrode) to form a ferroelectric capacitor. Information is imprinted in the ferroelectric layer by the polarization induced by the application of a voltage pulse between the top and bottom electrodes through the conductive UNCD tips. This integrated microelectromechanical (MEMS) and/or nanoelectromechanical (NEMS) system and structure can be efficiently used to imprint data in the ferroelectric layer for memory storage with high density in the gigabit (Gb) to terabit (Tb) range. An alternative memory media to the ferroelectric layer can be a phase change material that exhibits two orders of magnitude difference in electrical resistance between amorphous and crystalline phases.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2009},
month = {10}
}
Works referenced in this record:
Diamond AFM probe with piezoelectric sensor and actuator
conference, January 2003
- Shibata, T.; Unno, K.; Makino, E.
- IEEE International Solid-State Sensors and Actuators Conference, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)