Global to push GA events into
skip to main content

Title: Mid-infrared tunable metamaterials

A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.
; ; ;
Issue Date:
OSTI Identifier:
National Technology & Engineering Solutions of Sandia, LLC SNL-A
Patent Number(s):
Application Number:
Contract Number:
Resource Relation:
Patent File Date: 2010 Dec 10
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
Country of Publication:
United States

Works referenced in this record:

A metamaterial solid-state terahertz phase modulator
journal, February 2009
  • Chen, Hou-Tong; Padilla, Willie J.; Cich, Michael J.
  • Nature Photonics, Vol. 3, Issue 3, p. 148-151
  • DOI: 10.1038/nphoton.2009.3

Active terahertz metamaterial devices
journal, November 2006
  • Chen, Hou-Tong; Padilla, Willie J.; Zide, Joshua M. O.
  • Nature, Vol. 444, Issue 7119, p. 597-600
  • DOI: 10.1038/nature05343

The Electron Mobility and Thermoelectric Power in InSb at Atmospheric and Hydrostatic Pressures
journal, August 1981
  • Litwin-Staszewska, E.; SzymaƄska, W.; Piotrzkowski, R.
  • physica status solidi (b), Vol. 106, Issue 2, p. 551-559
  • DOI: 10.1002/pssb.2221060217

Magnetic Response of Metamaterials at 100 Terahertz
journal, November 2004
  • Linden, Stefan; Enkrich, Christian; Wegener, Martin
  • Science, Vol. 306, Issue 5700, p. 1351-1353
  • DOI: 10.1126/science.1105371

Superlenses to overcome the diffraction limit
journal, June 2008
  • Zhang, Xiang; Liu, Zhaowei
  • Nature Materials, Vol. 7, Issue 6, p. 435-441
  • DOI: 10.1038/nmat2141

An optical cloak made of dielectrics
journal, April 2009
  • Valentine, Jason; Li, Jensen; Zentgraf, Thomas
  • Nature Materials, Vol. 8, Issue 7, p. 568-571
  • DOI: 10.1038/nmat2461