DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments

Abstract

One of the main options for carbon mitigation identified by the IPCC is the sequestration of carbon in soils. In this paper we use statistical relationships derived from European long-term experiments to explore the potential for carbon sequestration in soils in the European Union. We examine five scenarios, namely (a) the amendment of arable soils with animal manure, (b) the amendment of arable soils with sewage sludge, (c) the incorporation of cereal straw into the soils in which it was grown, (d) the afforestation of surplus arable land through natural woodland regeneration, and (e) extensification of agriculture through ley-arable farming. Our calculations suggest only limited potential to increase soil carbon stocks over the next century by addition of animal manure, sewage sludge or straw (<15 Tg C y–1), but greater potential through extensification of agriculture (~40 Tg C y–1) or through the afforestation of surplus arable land (~50 Tg C y–1). We estimate that extensification could increase the total soil carbon stock of the European Union by 17%. Afforestation of 30% of present arable land would increase soil carbon stocks by about 8% over a century and would substitute up to 30 Tg C y–1 of fossil fuel carbon ifmore » the wood were used as biofuel. However, even the afforestation scenario, with the greatest potential for carbon mitigation, can sequester only 0.8% of annual global anthropogenic CO2-carbon. Our figures suggest that, although efforts in temperate agriculture can contribute to global carbon mitigation, the potential is small compared to that available through reducing anthropogenic CO2 emissions by halting tropical and sub-tropical deforestation or by reducing fossil fuel burning.« less

Authors:
; ; ;
  1. University of Aberdeen, Aberdeen, UK
Publication Date:
Product Type:
Dataset
Research Org.:
Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) (United States); Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
Terrestrial Initiative in Global Environmental Research (TIGR); U.K. Natural Environmental Research Council; Biotechnology and Biological Sciences Research Council of the United Kingdom
Subject:
54 ENVIRONMENTAL SCIENCES
OSTI Identifier:
1389521
DOI:
https://doi.org/10.3334/CDIAC/TCM.004

Citation Formats

Smith, P., Powlson, D., Glendining, M., and Smith, J. Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments. United States: N. p., 2003. Web. doi:10.3334/CDIAC/TCM.004.
Smith, P., Powlson, D., Glendining, M., & Smith, J. Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments. United States. doi:https://doi.org/10.3334/CDIAC/TCM.004
Smith, P., Powlson, D., Glendining, M., and Smith, J. 2003. "Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments". United States. doi:https://doi.org/10.3334/CDIAC/TCM.004. https://www.osti.gov/servlets/purl/1389521. Pub date:Wed Jan 01 00:00:00 EST 2003
@article{osti_1389521,
title = {Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments},
author = {Smith, P. and Powlson, D. and Glendining, M. and Smith, J.},
abstractNote = {One of the main options for carbon mitigation identified by the IPCC is the sequestration of carbon in soils. In this paper we use statistical relationships derived from European long-term experiments to explore the potential for carbon sequestration in soils in the European Union. We examine five scenarios, namely (a) the amendment of arable soils with animal manure, (b) the amendment of arable soils with sewage sludge, (c) the incorporation of cereal straw into the soils in which it was grown, (d) the afforestation of surplus arable land through natural woodland regeneration, and (e) extensification of agriculture through ley-arable farming. Our calculations suggest only limited potential to increase soil carbon stocks over the next century by addition of animal manure, sewage sludge or straw (<15 Tg C y–1), but greater potential through extensification of agriculture (~40 Tg C y–1) or through the afforestation of surplus arable land (~50 Tg C y–1). We estimate that extensification could increase the total soil carbon stock of the European Union by 17%. Afforestation of 30% of present arable land would increase soil carbon stocks by about 8% over a century and would substitute up to 30 Tg C y–1 of fossil fuel carbon if the wood were used as biofuel. However, even the afforestation scenario, with the greatest potential for carbon mitigation, can sequester only 0.8% of annual global anthropogenic CO2-carbon. Our figures suggest that, although efforts in temperate agriculture can contribute to global carbon mitigation, the potential is small compared to that available through reducing anthropogenic CO2 emissions by halting tropical and sub-tropical deforestation or by reducing fossil fuel burning.},
doi = {10.3334/CDIAC/TCM.004},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2003},
month = {1}
}

Works referencing / citing this record:

Setting priorities for land management to mitigate climate change
journal, March 2012