Hierarchical Sparse Bayesian Multitask Model with Scalable Inference
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
This project is an implementation of the Bayesian Multitask Learning (BayesMTL) from the paper Hierarchical Sparse Bayesian Multitask Model with Scalable Inference for Microbiome Analysis.
- Short Name / Acronym:
- BayesMTL
- Site Accession Number:
- LLNL-CODE-2002528
- Software Type:
- Scientific
- License(s):
- MIT License
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)Primary Award/Contract Number:AC52-07NA27344
- DOE Contract Number:
- AC52-07NA27344
- Code ID:
- 160451
- OSTI ID:
- code-160451
- Country of Origin:
- United States
Similar Records
Bayesian Multitask with Structure Learning
Multilevel Bayesian Inference for Cosmic Shear
Multiverse: Bayesian model selection for neural networks
Software
·
Wed Oct 30 20:00:00 EDT 2019
·
OSTI ID:code-49434
Multilevel Bayesian Inference for Cosmic Shear
Software
·
Mon May 09 00:00:00 EDT 2016
·
OSTI ID:1411204
Multiverse: Bayesian model selection for neural networks
Software
·
Sun Apr 02 20:00:00 EDT 2023
·
OSTI ID:code-105521