Hierarchical Sparse Bayesian Multitask Model with Scalable Inference

RESOURCE

Abstract

This project is an implementation of the Bayesian Multitask Learning (BayesMTL) from the paper Hierarchical Sparse Bayesian Multitask Model with Scalable Inference for Microbiome Analysis.
Developers:
Goncalves, Andre [1]
  1. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Release Date:
2024-08-07
Project Type:
Open Source, Publicly Available Repository
Software Type:
Scientific
Version:
1.0.0
Licenses:
MIT License
Sponsoring Org.:
Code ID:
160451
Site Accession Number:
LLNL-CODE-2002528
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Country of Origin:
United States

RESOURCE

Citation Formats

Goncalves, Andre. Hierarchical Sparse Bayesian Multitask Model with Scalable Inference. Computer Software. https://github.com/LLNL/BayesMTL. USDOE National Nuclear Security Administration (NNSA). 07 Aug. 2024. Web. doi:10.11578/dc.20250812.3.
Goncalves, Andre. (2024, August 07). Hierarchical Sparse Bayesian Multitask Model with Scalable Inference. [Computer software]. https://github.com/LLNL/BayesMTL. https://doi.org/10.11578/dc.20250812.3.
Goncalves, Andre. "Hierarchical Sparse Bayesian Multitask Model with Scalable Inference." Computer software. August 07, 2024. https://github.com/LLNL/BayesMTL. https://doi.org/10.11578/dc.20250812.3.
@misc{ doecode_160451,
title = {Hierarchical Sparse Bayesian Multitask Model with Scalable Inference},
author = {Goncalves, Andre},
abstractNote = {This project is an implementation of the Bayesian Multitask Learning (BayesMTL) from the paper Hierarchical Sparse Bayesian Multitask Model with Scalable Inference for Microbiome Analysis.},
doi = {10.11578/dc.20250812.3},
url = {https://doi.org/10.11578/dc.20250812.3},
howpublished = {[Computer Software] \url{https://doi.org/10.11578/dc.20250812.3}},
year = {2024},
month = {aug}
}