skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of electron-hole recombination-activated partial dislocations and their behavior in 4H-SiC epitaxial layers.

Journal Article · · J. Electron. Mater.

Electron-hole recombination-activated partial dislocations in 4H silicon carbide homoepitaxial layers and their behavior have been studied using synchrotron X-ray topography and electroluminescence. Stacking faults whose expansion was activated by electron-hole recombination enhanced dislocation glide were observed to be bounded by partial dislocations, which appear as white stripes or narrow dark lines in back-reflection X-ray topographs recorded using the basal plane reflections. Such contrast variations are attributable to the defocusing/focusing of the diffracted X-rays due to the edge component of the partial dislocations, which creates a convex/concave distortion of the basal planes. Simulation results based on the ray-tracing principle confirm our argument. Observations also indicate that, when an advancing partial dislocation interacts with a threading screw dislocation, a partial dislocation dipole is dragged behind in its wake. This partial dislocation dipole is able to advance regardless of the immobility of the C-core segment. A kink pushing mechanism is introduced to interpret the advancement of this partial dislocation dipole.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC); ORN grants; Dow Corning Corp.
DOE Contract Number:
DE-AC02-06CH11357
OSTI ID:
971964
Report Number(s):
ANL/XSD/JA-60782; JECMA5; TRN: US1001434
Journal Information:
J. Electron. Mater., Vol. 37, Issue 5 ; May 2008; ISSN 0361-5235
Country of Publication:
United States
Language:
ENGLISH