Dielectric properties of hydrogen-incorporated chemical vapor deposited diamond thin films.
Diamond thin films with a broad range of microstructures from a ultrananocrystalline diamond (UNCD) form developed at Argonne National Laboratory to a microcrystalline diamond (MCD) form have been grown with different hydrogen percentages in the Ar/CH{sub 4} gas mixture used in the microwave plasma enhanced chemical vapor deposition (CVD) process. The dielectric properties of the CVD diamond thin films have been studied using impedance and dc measurements on metal-diamond-metal test structures. Close correlations have been observed between the hydrogen content in the bulk of the diamond films, measured by elastic recoil detection (ERD), and their electrical conductivity and capacitance-frequency (C-f) behaviors. Addition of hydrogen gas in the Ar/CH{sub 4} gas mixture used to grow the diamond films appears to have two main effects depending on the film microstructure, namely, (a) in the UNCD films, hydrogen incorporates into the atomically abrupt grain boundaries satisfying sp{sup 2} carbon dangling bonds, resulting in increased resistivity, and (b) in MCD, atomic hydrogen produced in the plasma etches preferentially the graphitic phase codepositing with the diamond phase, resulting in the statistical survival and growth of large diamond grains and dominance of the diamond phase, and thus having significant impact on the dielectric properties of these films.
- Research Organization:
- Argonne National Laboratory (ANL)
- Sponsoring Organization:
- SC
- DOE Contract Number:
- AC02-06CH11357
- OSTI ID:
- 946676
- Report Number(s):
- ANL/MSD/JA-60401
- Journal Information:
- J. Appl. Phys., Journal Name: J. Appl. Phys. Journal Issue: 2007 Vol. 102; ISSN JAPIAU; ISSN 0021-8979
- Country of Publication:
- United States
- Language:
- ENGLISH
Similar Records
Electron paramagnetic resonance study of hydrogen-incorporated ultrananocrystalline diamond thin films.
Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films