skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fabrication of antiferroelectric PLZT films on metal foils.

Journal Article · · Mater. Res. Bull.

Fabrication of high-dielectric-strength antiferroelectric (AFE) films on metallic foils is technically important for advanced power electronics. To that end, we have deposited crack-free Pb{sub 0.92}La{sub 0.08}Zr{sub 0.95}Ti{sub 0.05}O{sub 3} (PLZT 8/95/5) films on nickel foils by chemical solution deposition. To eliminate the parasitic effect caused by the formation of a low-permittivity interfacial oxide, a conductive buffer layer of lanthanum nickel oxide (LNO) was coated by chemical solution deposition on the nickel foil before the deposition of PLZT. Use of the LNO buffer allowed high-quality film-on-foil capacitors to be processed in air. With the PLZT 8/95/5 deposited on LNO-buffered Ni foils, we observed field- and thermal-induced phase transformations of AFE to ferroelectric (FE). The AFE-to-FE phase transition field, E{sub AF} = 225 kV/cm, and the reverse phase transition field, E{sub FA} = 190 kV/cm, were measured at room temperature on a {approx}1.15 {micro}m-thick PLZT 8/95/5 film grown on LNO-buffered Ni foils. The relative permittivities of the AFE and FE states were {approx}600 and {approx}730, respectively, with dielectric loss {approx}0.04 at room temperature. The Curie temperature was {approx}210 C. The thermal-induced transition of AFE-to-FE phase occurred at {approx}175 C. Breakdown field strength of 1.2 MV/cm was measured at room temperature.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
EE
DOE Contract Number:
DE-AC02-06CH11357
OSTI ID:
942105
Report Number(s):
ANL/ES/JA-61517; MRBUAC; TRN: US200825%%772
Journal Information:
Mater. Res. Bull., Vol. 44, Issue 1 ; Jan. 2009; ISSN 0025-5408
Country of Publication:
United States
Language:
ENGLISH