skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY

Abstract

DOE has initiated numerous activities to focus on identifying material management strategies to disposition various excess fissile materials. In particular the INEEL has stored 1,700 Kg of offspec HEU at INTEC in CPP-651 vault facility. Currently, the proposed strategies for dispositioning are (a) aqueous dissolution and down blending to LEU via facilities at SRS followed by shipment of the liquid LEU to NFS for fabrication into LWR fuel for the TVA reactors and (b) dilution of the HEU to 0.9% for discard as a waste stream that would no longer have a criticality or proliferation risk without being processed through some type of enrichment system. Dispositioning this inventory as a waste stream via aqueous processing at SRS has been determined to be too costly. Thus, dry blending is the only proposed disposal process for the uranium oxide materials in the CPP-651 vault. Isotopic dilution of HEU to typically less than 20% by dry blending is the key to solving the dispositioning issue (i.e., proliferation) posed by HEU stored at INEEL. RM-2 mill is a technology developed and successfully tested for producing ultra-fine particles by dry grinding. Grinding action in RM-2 mill produces a two million-fold increase in the number ofmore » particles being blended in a centrifugal field. In a previous study, the concept of achieving complete and adequate blending and mixing (i.e., no methods were identified to easily separate and concentrate one titanium compound from the other) in remarkably short processing times was successfully tested with surrogate materials (titanium dioxide and titanium mono-oxide) with different particle sizes, hardness and densities. In the current project, the RM-2 milling technology was thoroughly tested with mixtures of natural uranium oxide (NU) and depleted uranium oxide (DU) stock to prove its performance. The effects of mill operating and design variables on the blending of NU/DU oxides were evaluated. First, NU and DU both made of the same oxide, UO{sub 3}, was used in the testing. Next, NU made up of UO{sub 3} and DU made up of UO{sub 2} was used in the test work. In every test, the blend achieved was characterized by spatial sampling of the ground product and analyzing for {sup 235}U concentration. The test work proved that these uranium oxide materials can be blended successfully. The spatial concentration was found to be uniform. Next, sintered thorium oxide pellets were used as surrogate for light water breeder reactor pellets (LWBR). To simulate LWBR pellet dispositioning, the thorium oxide pellets were first ground to a powder form and then the powder was blended with NU. In these tests also the concentration of {sup 235}U and {sup 232}Th in blended products fell within established limits proving the success of RM-2 milling technology. RM-2 milling technology is applicable to any dry radioactive waste, especially brittle solids that can be ground up and mixed with the non-radioactive stock.« less

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
University of Utah (US)
Sponsoring Org.:
(US)
OSTI Identifier:
824876
DOE Contract Number:
AC26-01NT41312
Resource Type:
Technical Report
Resource Relation:
Other Information: PBD: 1 Aug 2003
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; 12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; BREEDER REACTORS; DEPLETED URANIUM; DILUTION; FISSILE MATERIALS; HIGHLY ENRICHED URANIUM; NATURAL URANIUM; PARTICLE SIZE; RADIOACTIVE WASTES; THORIUM OXIDES; TITANIUM COMPOUNDS; URANIUM OXIDES

Citation Formats

Raj K. Rajamani, Sanjeeva Latchireddi, Vikas Devrani, Harappan Sethi, Roger Henry, and Nate Chipman. NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY. United States: N. p., 2003. Web. doi:10.2172/824876.
Raj K. Rajamani, Sanjeeva Latchireddi, Vikas Devrani, Harappan Sethi, Roger Henry, & Nate Chipman. NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY. United States. doi:10.2172/824876.
Raj K. Rajamani, Sanjeeva Latchireddi, Vikas Devrani, Harappan Sethi, Roger Henry, and Nate Chipman. Fri . "NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY". United States. doi:10.2172/824876. https://www.osti.gov/servlets/purl/824876.
@article{osti_824876,
title = {NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY},
author = {Raj K. Rajamani and Sanjeeva Latchireddi and Vikas Devrani and Harappan Sethi and Roger Henry and Nate Chipman},
abstractNote = {DOE has initiated numerous activities to focus on identifying material management strategies to disposition various excess fissile materials. In particular the INEEL has stored 1,700 Kg of offspec HEU at INTEC in CPP-651 vault facility. Currently, the proposed strategies for dispositioning are (a) aqueous dissolution and down blending to LEU via facilities at SRS followed by shipment of the liquid LEU to NFS for fabrication into LWR fuel for the TVA reactors and (b) dilution of the HEU to 0.9% for discard as a waste stream that would no longer have a criticality or proliferation risk without being processed through some type of enrichment system. Dispositioning this inventory as a waste stream via aqueous processing at SRS has been determined to be too costly. Thus, dry blending is the only proposed disposal process for the uranium oxide materials in the CPP-651 vault. Isotopic dilution of HEU to typically less than 20% by dry blending is the key to solving the dispositioning issue (i.e., proliferation) posed by HEU stored at INEEL. RM-2 mill is a technology developed and successfully tested for producing ultra-fine particles by dry grinding. Grinding action in RM-2 mill produces a two million-fold increase in the number of particles being blended in a centrifugal field. In a previous study, the concept of achieving complete and adequate blending and mixing (i.e., no methods were identified to easily separate and concentrate one titanium compound from the other) in remarkably short processing times was successfully tested with surrogate materials (titanium dioxide and titanium mono-oxide) with different particle sizes, hardness and densities. In the current project, the RM-2 milling technology was thoroughly tested with mixtures of natural uranium oxide (NU) and depleted uranium oxide (DU) stock to prove its performance. The effects of mill operating and design variables on the blending of NU/DU oxides were evaluated. First, NU and DU both made of the same oxide, UO{sub 3}, was used in the testing. Next, NU made up of UO{sub 3} and DU made up of UO{sub 2} was used in the test work. In every test, the blend achieved was characterized by spatial sampling of the ground product and analyzing for {sup 235}U concentration. The test work proved that these uranium oxide materials can be blended successfully. The spatial concentration was found to be uniform. Next, sintered thorium oxide pellets were used as surrogate for light water breeder reactor pellets (LWBR). To simulate LWBR pellet dispositioning, the thorium oxide pellets were first ground to a powder form and then the powder was blended with NU. In these tests also the concentration of {sup 235}U and {sup 232}Th in blended products fell within established limits proving the success of RM-2 milling technology. RM-2 milling technology is applicable to any dry radioactive waste, especially brittle solids that can be ground up and mixed with the non-radioactive stock.},
doi = {10.2172/824876},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Aug 01 00:00:00 EDT 2003},
month = {Fri Aug 01 00:00:00 EDT 2003}
}

Technical Report:

Save / Share:
  • The United States Department of Energy has initiated numerous activities to identify strategies to disposition various excess fissile materials. Two such materials are the off-specification highly enriched uranium-235 oxide powder and the uranium-233 contained in unirradiated nuclear fuel both currently stored at the Idaho National Engineering and Environmental Laboratory. This report describes the development of a technology that could dilute these materials to levels categorized as low-enriched uranium, or further dilute the materials to a level categorized as waste. This dilution technology opens additional pathways for the disposition of these excess fissile materials as existing processing infrastructure continues to bemore » retired.« less
  • The end of the cold war produced large amounts of excess fissile materials in the United States and Russia. The Department of Energy has initiated numerous activities to focus on identifying material management strategies for disposition of these excess materials. To date, many of these planning strategies have included isotopic dilution of highly enriched uranium as a means of reducing the proliferation and safety risks. Isotopic dilution by dry blending highly enriched uranium with natural and/or depleted uranium has been identified as one non-aqueous method to achieve these risk (proliferation and criticality safety) reductions. This paper reviews the technology ofmore » dry blending as applied to free flowing oxide materials.« less
  • This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEUmore » product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.« less
  • This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials to pure HEU uranyl nitrate (UNH) and (2) blend pure HEU UNH with depleted and natural UNH to produce HEU UNH crystals. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product willmore » be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU Will be produced as a waste suitable for storage or disposal.« less
  • This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEUmore » product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.« less