MHz repetition rate solid-state driver for high current induction accelerators
- LLNL
A research team from the Lawrence Livermore National Laboratory and Bechtel Nevada Corporation is developing an all solid-state power source for high current induction accelerators. The original power system design, developed for heavy-ion fusion accelerators, is based on the simple idea of using an array of field effect transistors to switch energy from a pre-charged capacitor bank to an induction accelerator cell. Recently, that idea has been expanded to accommodate the greater power needs of a new class of high-current electron accelerators for advanced radiography. For this purpose, we developed a 3-stage induction adder that uses over 4,000 field effect transistors to switch peak voltages of 45 kV at currents up to 4.8 kA with pulse repetition rates of up to 2 MHz. This radically advanced power system can generate a burst of five or more pulses that vary from 200 ns to 2 µs at a duty cycle of up to 25%. Our new source is precise, robust, flexible, and exceeds all previous drivers for induction machines by a factor of 400 in repetition rate and a factor of 1000 in duty cycle.
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA
- Sponsoring Organization:
- USDOE Office of Defense Programs (DP)
- DOE Contract Number:
- W-7405-ENG-48
- OSTI ID:
- 7954
- Report Number(s):
- UCRL-JC-132317; DP01012015; ON: DE00007954
- Country of Publication:
- United States
- Language:
- English
Similar Records
Repetitive energy transfer from an inductive energy store
Repetitive energy transfers from an inductive energy store