Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Repetitive energy transfer from an inductive energy store

Thesis/Dissertation ·
OSTI ID:6474676

The theoretical and experimental results of a research program aimed at finding practical ways to transfer energy repetitively from an inductive energy store to various loads are discussed. The objectives were to investigate and develop the high power opening switches and transfer circuits needed to enable high-repetition-rate operation of such systems, including a feasibility demonstration at a current level near 10 kA and a pulse repetition rate of 1-10 kpps with a 1-ohm load. The requirements of nonlinear, time-varying loads, such as the railgun electromagnetic launcher, were also addressed. Energy storage capability is needed for proper power conditioning in systems where the duty factor of the output pulse train is low. Inductive energy storage is attractive because it has both a high energy storage density and a fast discharge capability. By producing a pulse train with a peak power of 75 MW at a pulse repetition rate of 5 kpps in a one-ohm load system, this research program was the first to demonstrate fully-controlled, high-power, high-repetition-rate operation of an inductive energy storage and transfer system with survivable switches. Success was made possible by using triggered vacuum gap switches as repetitive, current-zero opening switches and developing several new repetitive transfer circuits using the counterpulse technique.

Research Organization:
Texas Tech Univ., Lubbock (USA)
OSTI ID:
6474676
Country of Publication:
United States
Language:
English