High-Rate Material Modeling and Validation Using the Taylor Cylinder Impact Test
- Los Alamos National Laboratory
Taylor Cylinder impact testing is used to validate anisotropic elastoplastic constitutive modeling by comparing polycrystal simulated yield surface shapes (topography) to measured shapes from post-test Taylor impact specimens and quasistatic compression specimens. Measured yield surface shapes are extracted from the experimental post-test geometries using classical r-value definitions modified for arbitrary stress state and specimen orientation. Rolled tantalum (body-centered-cubic metal) plate and clock-rolled zirconium (hexagonal-close-packed metal) plate are both investigated. The results indicate that an assumption of topography invariance with respect to strain-rate is justifiable for tantalum. However, a strong sensitivity of topography with respect to strain-rate for zirconium was observed, implying that some accounting for a deformation mechanism rate-dependence associated with lower-symmetry materials should be included in the constitutive modeling. Discussion of the importance of this topography rate-dependence and texture evolution in formulating constitutive models appropriate for FEM applications is provided.
- Research Organization:
- Los Alamos National Lab., NM (US)
- Sponsoring Organization:
- USDOE Office of Defense Programs (DP) (US)
- DOE Contract Number:
- W-7405-ENG-36
- OSTI ID:
- 759353
- Report Number(s):
- LA-UR-98-4545
- Country of Publication:
- United States
- Language:
- English
Similar Records
Multi-scale Modeling of Plasticity in Tantalum.
Description of tantalum deformation behavior by dislocation mechanics based constitutive relations