Description of tantalum deformation behavior by dislocation mechanics based constitutive relations
- Research and Technology Department, Naval Surface Warfare Center, Silver Spring, Maryland 20903-5000 (USA)
Dislocation mechanics based constitutive equation constants are determined for temperature, strain rate, work hardening, and polycrystal grain size influences on the deformation behavior of various tantalum materials. An analysis of the maximum load point strain provides a useful method of determining the work hardening constants. Different athermal stress constants and thermal activation related constants are obtained for certain groupings of the different tantalum materials. The variations are correlated with the annealing history of the materials and related to dislocation model parameters involved in the thermal activation strain rate analysis. Computed tantalum deformation results based on these constants are shown to agree with Gourdin's reported expanding ring test measurements and with the deformed shape of a Taylor cylinder impact test specimen.
- OSTI ID:
- 6566144
- Journal Information:
- Journal of Applied Physics; (USA), Journal Name: Journal of Applied Physics; (USA) Vol. 68:4; ISSN 0021-8979; ISSN JAPIA
- Country of Publication:
- United States
- Language:
- English
Similar Records
Modeling the mechanical behavior of tantalum
Constitutive Behavior of Model FCC, BCC, and HCP Metals: Experiments, Modeling and Validation