Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Electron microscopy of interfaces in silicon carbide whisker-reinforced alumina composites

Conference ·
OSTI ID:7171303
Knowledge about the nature of interfaces between SiC whiskers and alumina matrices is critical to understanding the mechanical behavior of these types of composites. The fracture toughness, in particular, is strongly influenced by the bond characteristics of this interface. Previous results have shown that oxidizing the whiskers in air prior to composite fabrication by vacuum hot-pressing results in composites which have lower toughness compared to those made with whiskers in the as-received condition. This investigation focusses on the effects of oxidizing and reducing surface treatments on the whiskers themselves and on the whisker-matrix interface. High resolution electron microscopy (HREM) was used to characterize the morphology and the amount of amorphous phase at the whisker-matrix interface, as well as the crystallography and topography of the interface. The present results indicate that the characteristics of the whisker/matrix interface may not be directly related to the initial whisker surface chemistry. Surprisingly, the thickest thermally-grown oxide layer resulted in the thinnest amorphous film at the SiC/Al{sub 2}O{sub 3}interface. 9 refs., 9 figs.
Research Organization:
Oak Ridge National Lab., TN (USA)
Sponsoring Organization:
DOE/ER
DOE Contract Number:
AC05-84OR21400
OSTI ID:
7171303
Report Number(s):
CONF-900466-35; ON: DE90010439
Country of Publication:
United States
Language:
English