Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Electrochromism in nickel oxide films

Thesis/Dissertation ·
OSTI ID:7114779
Optical absorption in a thin-film nickel oxide electrode depends on the state of charge of the electrode; the effect has been called electrochromism, and it may have practical applications in low-speed light modulation devices. In this dissertation, the physical and chemical processes which lead to the change in optical properties are investigated. Preparation of NiO film electrodes by reactive sputtering of a Ni target in an Ar + O[sub 2] gas mixture is described, and the electrochromic response is correlated to film growth conditions. Structural, electronic, and electrochemical properties of the NiO films are characterized by x-ray diffraction, infrared absorption, x-ray photoemission, optical absorption, electrical conductivity, and electrochemical measurements. It is proposed that the electrochromism results from the adsorption and desorption of protons at the oxygen-rich surface of a granular and porous NiO film. The surface electronic levels are then modified by the presence or absence of the O-H bonds, and the effect on the film electronic properties is discussed. A general discussion is also given of the current-limiting processes at the NiO film electrodes.
Research Organization:
California Univ., Berkeley, CA (United States)
OSTI ID:
7114779
Country of Publication:
United States
Language:
English