Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Investigation of brain injury using in vivo multinuclear magnetic resonance imaging and spectroscopy

Thesis/Dissertation ·
OSTI ID:7066897

Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) are becoming increasingly important tools to the fields of biochemistry, physiology, and medicine. MRI and MRS studies offer one the opportunity to obtain anatomic images and biochemical information non-invasively and non-destructively, thus making serial repeated measurements possible on the same experimental subject. To investigate brain injury, the non-invasiveness finally allows one to follow the time course of evolution of injury and its effects on the brains metabolism. Although MRI and MRS offer exciting opportunities, much work is needed to overcome the initial problems of signal localization from a specified region of interest. Also, the potential utility of multinuclear (i.e. {sup 13}C, {sup 19}F, {sup 23}Na...) MRI and MRS studies, in assessing brain injury, is yet to be determined. This thesis attacks the aforementioned problems with a series of studies both on phantoms and in vivo. Experiments were performed to determine optimal localization schemes for use in MRS of the brain to overcome the initial problems encountered with MRS studies. The feasibility and utility of multinuclear MRI and MRS was determined in vivo involving {sup 13}C, {sup 19}F, and {sup 23}Na nuclei. The results of these studies have proven that acceptable signal localization for MRS studies is achievable and is not a hindrance for future MRS studies. Also, multinuclear studies have shown that it is feasible to obtain MRI or MRS data from less abundant nuclei and that the information obtained does or can provide useful insights into brain metabolism in pathologic states.

Research Organization:
California Univ., San Francisco, CA (USA)
OSTI ID:
7066897
Country of Publication:
United States
Language:
English