skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Therapeutic administration of recombinant human granulocyte colony-stimulating factor accelerates hemopoietic regeneration and enhances survival in a murine model of radiation-induced myelosuppression

Abstract

The primary cause of death after radiation exposure is infection resulting from myelosuppression. Because granulocytes play a critical role in host defense against infection and because granulocyte proliferation and differentiation are enhanced by granulocyte colony-stimulating factor (G-CSF), this agent was evaluated for the ability to accelerate hemopoietic regeneration and to enhance survival in irradiated mice. C3H/HeN mice were irradiated and G-CSF (2.5 micrograms/day, s.c.) or saline was administered on days 3-12, 1-12 or 0-12 post-irradiation. Bone marrow, splenic and peripheral blood cellularity, and bone marrow and splenic granulocyte-macrophage progenitor cell recoveries were evaluated in mice exposed to 6.5 Gy. Mice exposed to 8 Gy were evaluated for multipotent hemopoietic stem cell recovery (using endogenous spleen colony-forming units) and enhanced survival. Results demonstrated that therapeutic G-CSF (1) accelerates hemopoietic regeneration after radiation-induced myelosuppression, (2) enhances survival after potentially lethal irradiation and (3) is most effective when initiated 1 h following exposure.

Authors:
; ; ;  [1]
  1. (Armed Forces Radiobiology Research Institute, Bethesda, MD (USA))
Publication Date:
OSTI Identifier:
6853390
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Cell Cloning; (USA); Journal Volume: 8:2
Country of Publication:
United States
Language:
English
Subject:
63 RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT.; GROWTH FACTORS; RADIOSENSITIVITY EFFECTS; LEUKOCYTES; CELL PROLIFERATION; ANEMIAS; MICE; RADIATION INJURIES; SURVIVAL TIME; WHOLE-BODY IRRADIATION; ANIMALS; BIOLOGICAL EFFECTS; BIOLOGICAL MATERIALS; BIOLOGICAL RADIATION EFFECTS; BLOOD; BLOOD CELLS; BODY FLUIDS; DISEASES; EXTERNAL IRRADIATION; HEMIC DISEASES; INJURIES; IRRADIATION; MAMMALS; MATERIALS; MITOGENS; ORGANIC COMPOUNDS; PROTEINS; RADIATION EFFECTS; RODENTS; SYMPTOMS; VERTEBRATES 560152* -- Radiation Effects on Animals-- Animals

Citation Formats

Patchen, M.L., MacVittie, T.J., Solberg, B.D., and Souza, L.M. Therapeutic administration of recombinant human granulocyte colony-stimulating factor accelerates hemopoietic regeneration and enhances survival in a murine model of radiation-induced myelosuppression. United States: N. p., 1990. Web. doi:10.1002/stem.5530080204.
Patchen, M.L., MacVittie, T.J., Solberg, B.D., & Souza, L.M. Therapeutic administration of recombinant human granulocyte colony-stimulating factor accelerates hemopoietic regeneration and enhances survival in a murine model of radiation-induced myelosuppression. United States. doi:10.1002/stem.5530080204.
Patchen, M.L., MacVittie, T.J., Solberg, B.D., and Souza, L.M. 1990. "Therapeutic administration of recombinant human granulocyte colony-stimulating factor accelerates hemopoietic regeneration and enhances survival in a murine model of radiation-induced myelosuppression". United States. doi:10.1002/stem.5530080204.
@article{osti_6853390,
title = {Therapeutic administration of recombinant human granulocyte colony-stimulating factor accelerates hemopoietic regeneration and enhances survival in a murine model of radiation-induced myelosuppression},
author = {Patchen, M.L. and MacVittie, T.J. and Solberg, B.D. and Souza, L.M.},
abstractNote = {The primary cause of death after radiation exposure is infection resulting from myelosuppression. Because granulocytes play a critical role in host defense against infection and because granulocyte proliferation and differentiation are enhanced by granulocyte colony-stimulating factor (G-CSF), this agent was evaluated for the ability to accelerate hemopoietic regeneration and to enhance survival in irradiated mice. C3H/HeN mice were irradiated and G-CSF (2.5 micrograms/day, s.c.) or saline was administered on days 3-12, 1-12 or 0-12 post-irradiation. Bone marrow, splenic and peripheral blood cellularity, and bone marrow and splenic granulocyte-macrophage progenitor cell recoveries were evaluated in mice exposed to 6.5 Gy. Mice exposed to 8 Gy were evaluated for multipotent hemopoietic stem cell recovery (using endogenous spleen colony-forming units) and enhanced survival. Results demonstrated that therapeutic G-CSF (1) accelerates hemopoietic regeneration after radiation-induced myelosuppression, (2) enhances survival after potentially lethal irradiation and (3) is most effective when initiated 1 h following exposure.},
doi = {10.1002/stem.5530080204},
journal = {International Journal of Cell Cloning; (USA)},
number = ,
volume = 8:2,
place = {United States},
year = 1990,
month = 3
}
  • The primary cause of death after radiation exposure is infection resulting from myelosuppression. Because granulocytes play a critical role in host defense against infection and because granulocyte proliferation and differentiation are enhanced by granulocyte colony-stimulating factor (G-CSF), this agent was evaluated for the ability to accelerate hemopoietic regeneration and to enhance survival in irradiated mice. C3H/HeN mice were irradiated and G-CSF or saline was administered on days 3-12, 1-12 or 0-12 post-irradiation. Bone marrow, splenic and peripheral blood cellularity and bone marrow and splenic granulocyte-macrophage progenitor cell recoveries were evaluated in mice exposed to 6.5 Gy. Mice exposed to 8more » Gy were evaluated for multipotent hemopoietic stem cell recovery (using endogenous spleen colony-forming units) and enhanced survival. Results demonstrated that therapeutic G-CSF (1) accelerates hemopoietic regeneration after radiation-induced myelosuppression, (2) enhances survival after potentially lethal irradiation and (3) is most effective when initiated 1 h following exposure.« less
  • C3H/HeN female mice were exposed to whole-body cobalt-60 radiation and administered soluble glucan (5 mg i.v. at 1 h following exposure), recombinant human granulocyte colony-stimulating factor (G-CSF; 2.5 micrograms/day s.c., days 3-12 following exposure), or both agents. Treatments were evaluated for their ability to enhance hemopoietic regeneration, and to increase survival after radiation-induced myelosuppression. Both glucan and G-CSF enhanced hemopoietic regeneration alone; however, greater effects were observed in mice receiving both agents. For example, on day 17 following a sublethal 6.5-Gy radiation exposure, mice treated with saline, G-CSF, glucan, or both agents, respectively, exhibited 36%, 65%, 50%, and 78% ofmore » normal bone marrow cellularity, and 84%, 175%, 152%, and 212% of normal splenic cellularity. At this same time, granulocyte-macrophage colony-forming cell (GM-CFC) values in saline, G-CSF, glucan, or combination-treated mice, respectively, were 9%, 46%, 26%, and 57% of normal bone marrow values, and 57%, 937%, 364%, and 1477% of normal splenic values. Endogenous spleen colony formation was also increased in all treatment groups, with combination-treated mice exhibiting the greatest effects. Likewise, although both glucan and G-CSF alone enhanced survival following an 8-Gy radiation exposure, greatest survival was observed in mice treated with both agents. These studies suggest that glucan, a macrophage activator, can synergize with G-CSF to further accelerate hemopoietic regeneration and increase survival following radiation-induced myelosuppression.« less
  • Interleukin 1 alpha (IL-1 alpha), tumor necrosis factor alpha (TNF alpha), granulocyte-colony-stimulating factor (G-CSF), and granulocyte-macrophage colony-stimulating factor (GM-CSF) are molecularly distinct cytokines acting on separate receptors. The release of these cytokines can be concomitantly induced by the same signal and from the same cellular source, suggesting that they may cooperate. Administered alone, human recombinant (hr)IL-1 alpha and hrTNF alpha protect lethally irradiated mice from death, whereas murine recombinant GM-CSF and hrG-CSF do not confer similar protection. On a dose basis, IL-1 alpha is a more efficient radioprotector than TNF alpha. At optimal doses, IL-1 alpha is a more radioprotectivemore » cytokine than TNF alpha in C57BL/6 and B6D2F1 mice and less effective than TNF alpha in C3H/HeN mice, suggesting that the relative effectiveness of TNF alpha and IL-1 alpha depends on the genetic makeup of the host. Administration of the two cytokines in combination results in additive radioprotection in all three strains. This suggests that the two cytokines act through different radioprotective pathways and argues against their apparent redundancy. Suboptimal, nonradioprotective doses of IL-1 alpha also synergize with GM-CSF or G-CSF to confer optimal radioprotection, suggesting that such an interaction may be necessary for radioprotection of hemopoietic progenitor cells.« less
  • Supernatants of COS-1 cells transfected with gibbon cDNA encoding interleukin 3 (IL-3) with homology to sequences for human IL-3 were tested for ability to promote growth of various human hemopoietic progenitors. The effect of these supernatants as a source of recombinant IL-3 was compared to that of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) as well as to that of medium conditioned by phytohemagglutinin-stimulated leukocytes. The frequency of multilineage colonies, erythroid bursts, and megakaryocyte colonies in cultures containing the COS-1 cell supernatant was equivalent to the frequency observed in the controls and significantly higher than foundmore » in cultures plated with recombinant GM-CSF. G-CSF did not support the formation of multilineage colonies, erythroid bursts, and megakaryocyte colonies. In contrast, growth of granulocyte-macrophage colonies was best supported with GM-CSF, while recombinant IL-3 yielded colonies at lower or at best equivalent frequency. The simultaneous addition of higher concentrations of GM-CSF to cultures containing IL-3 in optimal amounts did not enhance the formation of multilineage colonies, erythroid bursts, and megakaryocyte colonies. However, the frequency of such colonies and bursts increased with GM-CSF when cultures were plated with suboptimal concentrations of IL-3. Growth of colonies within the granulocyte-macrophage lineage is optimally supported by GM-CSF and does not increase with further addition of IL-3.« less
  • C3H/HeN female mice were exposed to whole-body cobalt-60 radiation and administered soluble glucan (5 mg i.v. at 1 h following exposure), recombinant human granulocyte colony-stimulating factor or both agents. Treatments were evaluated for their ability to enhance hemopoietic regeneration, and to increase survival after radiation-induced myelosuppression. Both glucan and G-CSF enhanced hemopoietic regeneration alone; however, greater effects were observed in mice receiving both agents. For example, on day 17 following a sublethal 6.5-Gy radiation exposure, mice treated with saline, G-CSF, glucan, or both agents, respectively, exhibited 36%, 65%, 50%, and 78% of normal bone marrow cellularity, and 84%, 175%, 152%,more » and 212% of normal splenic cellularity.« less