skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced osteoblast proliferation and collagen gene expression by estradiol

Abstract

Estrogens play a crucial role in the development of postmenopausal osteoporosis. However, the mechanism by which estrogens exert their effects on bone is unknown. To examine possible direct effects of 17{beta}-estradiol on bone-forming cells, the authors used pure rat osteoblast-like cells in vitro as a model. Osteoblast-like cells prepared from calvaria of newborn rats were cultured serum-free in methylcellulose-containing medium for 21 days. Osteoblast-like cells proliferate selectively into clonally derived cell clusters of spherical morphorlogy. 17{beta}-Estradiol at concentrations of 0.1 nM and 1 nM enhanced osteoblast-like cell proliferation by 41% and 68% above vehicle-treated controls. The biologically inactive stereoisomer 17{alpha}-estradiol (same concentrations) had no effect. Moreover, the antiestrogen tamoxifen abolished the stimulation of osteoblast-like cell proliferation by 17{beta}-estradiol. After 21 days of culture, RNA was prepared and analyzed in a dot-hybridization assay for the abundance of pro{alpha}1(I) collagen mRNA. Steady-state mRNA levels were increased in cultures treated with 17{beta}-estradiol in a dose-dependent manner with maximal stimulation at 1 nM and 10 nM. At the same concentrations, the percentage of synthesized protein (labeled by ({sup 3}H)proline pulse) that was digestible by collagenase was increased, indicating that 17{beta}-estradiol acts as pretranslational levels to enhance synthesis of bone collagen. These data show thatmore » the osteoblast is a direct target for 17{beta}-estradiol.« less

Authors:
; ;  [1]
  1. (University Hospital of Zurich (Switzerland))
Publication Date:
OSTI Identifier:
6827888
Resource Type:
Journal Article
Resource Relation:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America; (USA); Journal Volume: 85:7
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; BONE CELLS; CELL PROLIFERATION; COLLAGEN; GENE REGULATION; ESTRADIOL; BIOCHEMISTRY; OSTEOPOROSIS; PATHOGENESIS; CELL CULTURES; GROWTH; HYBRIDIZATION; NEONATES; PHOSPHORUS 32; PROLINE; RATS; TRITIUM COMPOUNDS; AMINES; AMINO ACIDS; ANIMAL CELLS; ANIMALS; AZOLES; BETA DECAY RADIOISOTOPES; BETA-MINUS DECAY RADIOISOTOPES; CARBOXYLIC ACIDS; CHEMISTRY; CONNECTIVE TISSUE CELLS; DAYS LIVING RADIOISOTOPES; DISEASES; ESTRANES; ESTROGENS; HETEROCYCLIC ACIDS; HETEROCYCLIC COMPOUNDS; HORMONES; HYDROGEN COMPOUNDS; HYDROXY COMPOUNDS; ISOTOPES; LIGHT NUCLEI; MAMMALS; NUCLEI; ODD-ODD NUCLEI; ORGANIC ACIDS; ORGANIC COMPOUNDS; ORGANIC NITROGEN COMPOUNDS; PHOSPHORUS ISOTOPES; PROTEINS; PYRROLES; PYRROLIDINES; RADIOISOTOPES; RODENTS; SCLEROPROTEINS; SKELETAL DISEASES; SOMATIC CELLS; STEROID HORMONES; STEROIDS; VERTEBRATES 550301* -- Cytology-- Tracer Techniques

Citation Formats

Ernest, M., Schmid, Ch., and Froesch, E.R. Enhanced osteoblast proliferation and collagen gene expression by estradiol. United States: N. p., 1988. Web. doi:10.1073/pnas.85.7.2307.
Ernest, M., Schmid, Ch., & Froesch, E.R. Enhanced osteoblast proliferation and collagen gene expression by estradiol. United States. doi:10.1073/pnas.85.7.2307.
Ernest, M., Schmid, Ch., and Froesch, E.R. 1988. "Enhanced osteoblast proliferation and collagen gene expression by estradiol". United States. doi:10.1073/pnas.85.7.2307.
@article{osti_6827888,
title = {Enhanced osteoblast proliferation and collagen gene expression by estradiol},
author = {Ernest, M. and Schmid, Ch. and Froesch, E.R.},
abstractNote = {Estrogens play a crucial role in the development of postmenopausal osteoporosis. However, the mechanism by which estrogens exert their effects on bone is unknown. To examine possible direct effects of 17{beta}-estradiol on bone-forming cells, the authors used pure rat osteoblast-like cells in vitro as a model. Osteoblast-like cells prepared from calvaria of newborn rats were cultured serum-free in methylcellulose-containing medium for 21 days. Osteoblast-like cells proliferate selectively into clonally derived cell clusters of spherical morphorlogy. 17{beta}-Estradiol at concentrations of 0.1 nM and 1 nM enhanced osteoblast-like cell proliferation by 41% and 68% above vehicle-treated controls. The biologically inactive stereoisomer 17{alpha}-estradiol (same concentrations) had no effect. Moreover, the antiestrogen tamoxifen abolished the stimulation of osteoblast-like cell proliferation by 17{beta}-estradiol. After 21 days of culture, RNA was prepared and analyzed in a dot-hybridization assay for the abundance of pro{alpha}1(I) collagen mRNA. Steady-state mRNA levels were increased in cultures treated with 17{beta}-estradiol in a dose-dependent manner with maximal stimulation at 1 nM and 10 nM. At the same concentrations, the percentage of synthesized protein (labeled by ({sup 3}H)proline pulse) that was digestible by collagenase was increased, indicating that 17{beta}-estradiol acts as pretranslational levels to enhance synthesis of bone collagen. These data show that the osteoblast is a direct target for 17{beta}-estradiol.},
doi = {10.1073/pnas.85.7.2307},
journal = {Proceedings of the National Academy of Sciences of the United States of America; (USA)},
number = ,
volume = 85:7,
place = {United States},
year = 1988,
month = 4
}
  • The retinoblastoma protein-interacting zinc-finger (RIZ) gene, a member of the nuclear protein methyltransferase superfamily, is characterized by the presence of the N-terminal PR domain. The RIZ gene encodes for two proteins, RIZ1 and RIZ2. While RIZ1 contains the PR (PRDI-BF1 and RIZ homologous) domain, RIZ2 lacks it. RIZ gene expression is altered in a variety of human cancers and RIZ1 is now considered to be a candidate tumor suppressor. Estradiol treatment of MCF-7 cells produced a selective decrease of RIZ1 transcript and an increase of total RIZ mRNA. Experiments of chromatin immunoprecipitation indicated that RIZ2 protein expression was controlled bymore » estrogen receptor and RIZ1 had a direct repressor function on c-myc gene expression. To investigate the role of RIZ gene products as regulators of the proliferation/differentiation transition, we analyzed the effects of forced suppression of RIZ1 induced in MCF-7 cells by siRNA of the PR domain-containing form. Silencing of RIZ1 expression stimulated cell proliferation, similar to the effect of estradiol on these cells, associated with a transient increase of c-myc expression.« less
  • Highlights: ► hYKL-39 expression is increased in osteoarthritic articular chondrocytes. ► To examine the molecular functions of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in chondrocytic ATDC5 cells. ► hYKL-39 enhanced proliferation and colony formation in ATDC5 cells. ► hYKL-39 increased type II collagen expression in ATDC5 cells treated with chondrogenic medium. -- Abstract: Human YKL39 (chitinase 3-like protein 2/CHI3L2) is a secreted 39 kDa protein produced by articular chondrocytes and synoviocytes. Recent studies showed that hYKL-39 expression is increased in osteoarthritic articular chondrocytes suggesting the involvement of hYKL-39 in the progression of osteoarthritis (OA). However little is known regarding themore » molecular function of hYKL-39 in joint homeostasis. Sequence analyses indicated that hYKL-39 has significant identity with the human chitotorisidase family molecules, although it is considered that hYKL-39 has no enzymatic activity since it lacks putative chitinase catalytic motif. In this study, to examine the molecular function of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in ATDC5 cells. Here we report that hYKL-39 enhances colony forming activity, cell proliferation, and type II collagen expression in these cells. These data suggest that hYKL-39 is a novel growth and differentiation factor involved in cartilage homeostasis.« less
  • Strontium ranelate, a new agent for the treatment of osteoporosis, has been shown stimulate bone formation in various experimental models. This study examines the effect of strontium ranelate on gene expression in osteoblasts, as well as the formation of mineralized (von Kossa-positive) colony-forming unit-osteoblasts (CFU-obs). Bone marrow-derived stromal cells cultured for 21 days under differentiating conditions, when exposed to strontium ranelate, displayed a significant time- and concentration-dependent increase in the expression of the master gene, Runx2, as well as bone sialoprotein (BSP), but interestingly without effects on osteocalcin. This was associated with a significant increase in the formation of CFU-obsmore » at day 21 of culture. In U-33 pre-osteoblastic cells, strontium ranelate significantly enhanced the expression of Runx2 and osteocalcin, but not BSP. Late, more mature osteoblastic OB-6 cells showed significant elevations in BSP and osteocalcin, but with only minimal effects on Runx2. In conclusion, strontium ranelate stimulates osteoblast differentiation, but the induction of the program of gene expression appears to be cell type-specific. The increased osteoblastic differentiation is the likely basis underlying the therapeutic bone-forming actions of strontium ranelate.« less
  • We examined changes in the genomic response during continuous exposure to the xenoestrogen ethynylestradiol. Isogenic rainbow trout Onorhyncus mykiss were exposed to nominal concentrations of 100 ng/L ethynyl estradiol (EE2) for a period 3 weeks. At fixed time points within the exposure fish were euthanized, livers harvested and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Salmonid array (GRASP project, University of Victoria) spotted with 16,000 cDNA's. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a listmore » of up and down regulated genes, and to determine gene clustering patterns that can be used as ''expression signatures''. Gene ontology was determined using the annotation available from the GRASP website. Our analysis indicates each exposure time period generated specific gene expression profiles. Changes in gene expression were best understood by grouping genes by their gene expression profiles rather than examining fold change at a particular time point. Many of the genes commonly used as biomarkers of exposure to xenoestrogens were not induced initially and did not have gene expression profiles typical of the majority of genes with altered expression.« less
  • Transforming growth factor-{beta}1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which ERK2 is supposed to be crucial. Based on these assumptions, lentivirus (LV)-mediated small interfering RNAs (siRNAs) targeting ERK2 were used to suppress the proliferation and collagen expression of rat joint adhesion tissue fibroblasts (RJATFs). Among four siRNAs examined, siRNA1 caused an 84% reduction in ERK2 expression (p < 0.01) and was selected as the most efficient siRNA for use in this study. In subsequent experiments, significantmore » downregulation of types I and III collagen were observed by quantitative RT-PCR and Western blot analyses. MTT assays and flow cytometry revealed marked inhibition of RJATF proliferation, but no apoptosis. In conclusion, LV-mediated ERK2 siRNAs may represent novel therapies or drug targets for preventing joint adhesion formation.« less