Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Fundamental Studies of Defect Generation in Amorphous Silicon Alloys Grown by Remote Plasma-Enhanced Chemical Vapor Deposition (Remote PECVD), Annual Subcontract Report, 1 September 1990 - 31 August 1991

Technical Report ·
DOI:https://doi.org/10.2172/6796766· OSTI ID:6796766

We demonstrated that the remote PECVD process can be used to deposit heavily doped n-type and p-type a-Si:H thin films. We optimized conditions for depositing undoped, near-intrinsic and heavily doped thin films of [mu]c(microcrystalline)-Si by remote PECVD. We extended the remote PECVD process to the deposition of undoped and doped a-Si,C:H and [mu]c-Si,C alloy films. We analyzed transport data for the dark conductivity in undoped and doped a-Si:H, a-Si,C:H, [mu]c-Si and [mu]c-Si,C films. We studied the properties of doped a-Si:H and [mu]c-Si in MOS capacitors using [approximately]10 [Omega]-cm p-type crystalline substrates and thermally grown Si0[sub 2] dielectric layers. We collaborated with a group at RWTH in Aachen, Germany, and studied the contributions of process induced defect states to the recombination of photogenerated electron pairs. We applied a tight-binding model to Si-Bethe lattice structures to investigate the effects of bond angle, and dihedral angle disorder. We used ab initio and empirical calculations to study non-random bonding arrangements in a-Si,O:H and doped a-Si:H films.

Research Organization:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
DOE Contract Number:
AC36-08GO28308
OSTI ID:
6796766
Report Number(s):
NREL/TP-451-4852; ON: DE92010560
Country of Publication:
United States
Language:
English