Korteweg-de Vries superequation related to the Lie superalgebra of Neveu-Schwarz-2 string theory
Journal Article
·
· Theor. Math. Phys.; (United States)
OSTI ID:6187707
The connections that exist between the Korteweg-de Vries equation, the Virasoro algebra, and the Kac-Moody algebra sl(2) make it possible to construct an integrable superequation that is an analog of the Korteweg-de Vries equation for the Neveu-Schwarz-2 superalgebra by means of Hamiltonian reduction from the Kac-Moody algebra sl(2/1).
- Research Organization:
- State Univ., Moscow (USSR)
- OSTI ID:
- 6187707
- Journal Information:
- Theor. Math. Phys.; (United States), Journal Name: Theor. Math. Phys.; (United States) Vol. 72:2; ISSN TMPHA
- Country of Publication:
- United States
- Language:
- English
Similar Records
On the Korteweg-de Vries equations
New fractional derivatives applied to the Korteweg–de Vries and Korteweg–de Vries–Burger’s equations
The absolute rigidity of the Neveu{endash}Schwarz and Ramond superalgebras
Journal Article
·
Thu Sep 01 00:00:00 EDT 1988
· Hadronic Journal; (USA)
·
OSTI ID:5711174
New fractional derivatives applied to the Korteweg–de Vries and Korteweg–de Vries–Burger’s equations
Journal Article
·
Sat Sep 15 00:00:00 EDT 2018
· Computational and Applied Mathematics
·
OSTI ID:22769207
The absolute rigidity of the Neveu{endash}Schwarz and Ramond superalgebras
Journal Article
·
Thu Oct 31 23:00:00 EST 1996
· Journal of Mathematical Physics
·
OSTI ID:388209
Related Subjects
645400* -- High Energy Physics-- Field Theory
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
COMPOSITE MODELS
CONSERVATION LAWS
DIFFERENTIAL EQUATIONS
ENERGY-MOMENTUM TENSOR
EQUATIONS
EXTENDED PARTICLE MODEL
FIELD THEORIES
GRADED LIE GROUPS
HAMILTONIANS
KORTEWEG-DE VRIES EQUATION
LIE GROUPS
MATHEMATICAL MANIFOLDS
MATHEMATICAL MODELS
MATHEMATICAL OPERATORS
MATHEMATICAL SPACE
PARTIAL DIFFERENTIAL EQUATIONS
PARTICLE MODELS
PHASE SPACE
POISSON EQUATION
QUANTUM FIELD THEORY
QUANTUM OPERATORS
QUARK MODEL
RECURSION RELATIONS
SPACE
STRING MODELS
SYMMETRY GROUPS
TENSORS
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
COMPOSITE MODELS
CONSERVATION LAWS
DIFFERENTIAL EQUATIONS
ENERGY-MOMENTUM TENSOR
EQUATIONS
EXTENDED PARTICLE MODEL
FIELD THEORIES
GRADED LIE GROUPS
HAMILTONIANS
KORTEWEG-DE VRIES EQUATION
LIE GROUPS
MATHEMATICAL MANIFOLDS
MATHEMATICAL MODELS
MATHEMATICAL OPERATORS
MATHEMATICAL SPACE
PARTIAL DIFFERENTIAL EQUATIONS
PARTICLE MODELS
PHASE SPACE
POISSON EQUATION
QUANTUM FIELD THEORY
QUANTUM OPERATORS
QUARK MODEL
RECURSION RELATIONS
SPACE
STRING MODELS
SYMMETRY GROUPS
TENSORS