On the Korteweg-de Vries equations
Journal Article
·
· Hadronic Journal; (USA)
OSTI ID:5711174
- Universidad de Oriente, Cumana (Venezuela)
The modern focus of Hamiltonian formalism takes as a fundamental aspect of its approach the Poisson bracket. Let C{sup {infinity}}(M) be the ring of all infinitely differentiable functions in a certain manifold M. It is concluded that the Poisson bracket is an operation that transforms C{sup {infinity}}(M) into a Lie algebra. This formalism has important applications to the investigation of a series of nonlinear equations of mathematical physics, which have the important quality of being universal. Classical examples are the Korteweg-de Vries (KdV), Schroedinger, and other equations. The authors deduce certain new properties of the Korteweg-de Vries equations based on a study of the equivalent Miura-KdV equation.
- OSTI ID:
- 5711174
- Journal Information:
- Hadronic Journal; (USA), Journal Name: Hadronic Journal; (USA) Vol. 11:5; ISSN HAJOD; ISSN 0162-5519
- Country of Publication:
- United States
- Language:
- English
Similar Records
Supersymmetric quantum mechanics and the Korteweg--de Vries hierarchy
On a hierarchy of nonlinearly dispersive generalized Korteweg - de Vries evolution equations
New fractional derivatives applied to the Korteweg–de Vries and Korteweg–de Vries–Burger’s equations
Journal Article
·
Sun May 01 00:00:00 EDT 1994
· Journal of Mathematical Physics (New York); (United States)
·
OSTI ID:5019502
On a hierarchy of nonlinearly dispersive generalized Korteweg - de Vries evolution equations
Journal Article
·
Wed Aug 19 20:00:00 EDT 2015
· Proceedings of the Estonian Academy of Sciences
·
OSTI ID:1221155
New fractional derivatives applied to the Korteweg–de Vries and Korteweg–de Vries–Burger’s equations
Journal Article
·
Sat Sep 15 00:00:00 EDT 2018
· Computational and Applied Mathematics
·
OSTI ID:22769207
Related Subjects
657000* -- Theoretical & Mathematical Physics
71 CLASSICAL AND QUANTUM MECHANICS
GENERAL PHYSICS
ALGEBRA
DIFFERENTIAL EQUATIONS
EQUATIONS
FUNCTIONS
HAMILTONIAN FUNCTION
KORTEWEG-DE VRIES EQUATION
MATHEMATICAL MANIFOLDS
MATHEMATICS
NONLINEAR PROBLEMS
PARTIAL DIFFERENTIAL EQUATIONS
PHYSICS
POISSON EQUATION
TRANSFORMATIONS
71 CLASSICAL AND QUANTUM MECHANICS
GENERAL PHYSICS
ALGEBRA
DIFFERENTIAL EQUATIONS
EQUATIONS
FUNCTIONS
HAMILTONIAN FUNCTION
KORTEWEG-DE VRIES EQUATION
MATHEMATICAL MANIFOLDS
MATHEMATICS
NONLINEAR PROBLEMS
PARTIAL DIFFERENTIAL EQUATIONS
PHYSICS
POISSON EQUATION
TRANSFORMATIONS