New fractional derivatives applied to the Korteweg–de Vries and Korteweg–de Vries–Burger’s equations
Journal Article
·
· Computational and Applied Mathematics
- Cankaya University, Department of Mathematics, Faculty of Sciences (Turkey)
- University of the Free State, Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences (South Africa)
In this paper, we extend the model of the Korteweg–de Vries (KDV) and Korteweg–de Vries–Burger’s (KDVB) to new model time fractional Korteweg–de Vries (TFKDV) and time fractional Korteweg–de Vries-Burger’s (TFKDVB) with Liouville–Caputo (LC), Caputo–Fabrizio (CF), and Atangana-Baleanu (AB) fractional time derivative equations, respectively. We utilize the q-homotopy analysis transform method (q-HATM) to compute the approximate solutions of TFKDV and TFKDVB using LC, CF and AB in Liouville–Caputo sense. We study the convergence analysis of q-HATM by computing the Residual Error Function (REF) and finding the interval of the convergence through the h-curves. Also, we find the optimal values of h so that, we assure the convergence of the approximate solutions. The results are very effective and accurate in solving the TFKDV and TFKDVB.
- OSTI ID:
- 22769207
- Journal Information:
- Computational and Applied Mathematics, Journal Name: Computational and Applied Mathematics Journal Issue: 4 Vol. 37; ISSN 0101-8205
- Country of Publication:
- United States
- Language:
- English
Similar Records
Korteweg-de Vries Burgers equation for magnetosonic wave in plasma
On the Korteweg-de Vries equations
Soliton evolution and radiation loss for the Korteweg--de Vries equation
Journal Article
·
Sun May 15 00:00:00 EDT 2011
· Physics of Plasmas
·
OSTI ID:21537804
On the Korteweg-de Vries equations
Journal Article
·
Thu Sep 01 00:00:00 EDT 1988
· Hadronic Journal; (USA)
·
OSTI ID:5711174
Soliton evolution and radiation loss for the Korteweg--de Vries equation
Journal Article
·
Sat Dec 31 23:00:00 EST 1994
· Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics; (United States)
·
OSTI ID:6702122