Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

The simulation of the sedimentary fill of basins and the characterization of hydrocarbon plays by an expert system

Thesis/Dissertation ·
OSTI ID:5979803

This dissertation investigates the forward modeling of sedimentary basins using a simulation program, and the characterization of hydrocarbon fields or plays using an expert systems approach. The simulation program models processes associated with eustatic sea level, tectonic behavior, and rates of sediment accumulation in an attempt to explain the sediment geometries seen in a basin. The knowledge-based system, PLAYMAKER is designed as an interactive system to aid geologists in characterizing their fields or prospects. SEDPAK is designed as an interactive computer simulation tool. It erects models of sedimentary geometries by filling in a two-dimensional basin from both sides with a combination of clastic sediment and/or in situ and transported carbonate sediments. Clastic modeling includes sedimentary bypass and erosion and sedimentation in alluvial and coastal plains, marine shelf, basin slope and basin floor settings. Carbonate modeling includes progradation, the development of hard grounds, down slope aprons, keep up, catch up, back step and drowned reef facies as well as lagoonal and epeiric facies. Also included in the model are extensional vertical faulting of the basin, sediment compaction, and isostatic response to sediment loading. PLAYMAKER is an interactive query/response knowledge-based system that elicits field attributes and their qualities from the user in order to characterize a hydrocarbon play. The geologic model developed in PLAYMAKER describes a prospect in terms of its essential characteristics, such as basin type, structural style and history, location of the depositional setting, sediment type and geometry, facies model, reservoir quality, and source and seal potential. The system is implemented using MIDST, a rule-based expert system shell that incorporates uncertain reasoning based on the Dempster-Shafer framework.

Research Organization:
South Carolina Univ., Columbia, SC (USA)
OSTI ID:
5979803
Country of Publication:
United States
Language:
English