skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Aluminum ions induce oat protoplasts to produce an extracellular (1 yields 3). beta. -D-glucan

Journal Article · · Plant Physiology; (USA)
DOI:https://doi.org/10.1104/pp.94.1.13· OSTI ID:5922099
;  [1]
  1. Michigan State Univ., East Lansing (USA)

Aluminum chloride induced mesophyll protoplasts of oat (Avena sativa) to produce an extracellular polysaccharide (EPS). EPS induced by AlCl{sub 3} appeared identical to that produced in response to the phytotoxin victorin. Al ions at 1 millimolar were toxic to protoplasts, but maximum EPS production occurred at a sublethal concentration of 200 micromolar, assayed at pH 6.0. As measured by incorporation of ({sup 14}C)glucose, AlCl{sub 3} stimulated EPS production 10- to 15-fold. Pretreatment of protoplasts with cycloheximide prevented EPS production but not cell death in response to AlCl{sub 3}, indicating that protein synthesis was necessary for EPS production but not for the phytotoxicity of Al ions. The trivalent salts of Y, Yb, Gd, and In also induced EPS production but those of Sc, Fe, Ga, Cr, and La did not. Mesophyll protoplasts from an acid-soil tolerant oat cultivar produced less EPS in response to AlCl{sub 3} than the acid-soil sensitive cultivar Fla 501. EPS was also produced by wheat (Triticum aestivum) and barley (Hordeum vulgare) protoplasts in response to AlCl{sub 3}. An Al-tolerant cultivar of wheat, Atlas, produced less EPS than an Al-sensitive cultivar, Scout, but an Al-tolerant cultivar of barley, Dayton, produced more than the Al-sensitive cultivar Kearney. Therefore, production of EPS by protoplasts in response to Al ions did not appear to be related to Al ion tolerance at the level of whole plants. EPS fluoresced in the presence of Calcofluor and Sirofluor and was degraded by purified laminarinase ((1{yields}3){beta}-D-glucanase) but did not pectinase (polygalacturonase). EPS was composed solely of glucose in 1{yields}3 linkages; hence it is a (1{yields}3){beta}-D-glucan (callose).

OSTI ID:
5922099
Journal Information:
Plant Physiology; (USA), Vol. 94:1; ISSN 0032-0889
Country of Publication:
United States
Language:
English