Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

CCD (charge-coupled device) sensors in synchrotron x-ray detectors

Conference ·
OSTI ID:5859675
The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron x-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm/sup 2/ can be imaged on a 2 cm/sup 2/ CCD. With a conversion efficiency of approx.1 CCD electron/x-ray photon, a peak saturation capacity of >10/sup 6/ x rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 x 10/sup 6/ pixels/s and the shift rate in the parallel registers is 10/sup 6/ lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode x-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at the rate of approx.1 frame/s or a complete 3-dimensional data set from a single crystal in approx.2 min. 16 refs., 16 figs., 2 tabs.
Research Organization:
Argonne National Lab., IL (USA)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
5859675
Report Number(s):
CONF-870610-17; ON: DE88002930
Country of Publication:
United States
Language:
English