Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Paraquat and NADPH-dependent lipid peroxidation in lung microsomes

Journal Article · · J. Biol. Chem.; (United States)
OSTI ID:5765034

Since there exists some controversy in the literature as to whether paraquat augments microsomal lipid peroxidation via superoxide anion (O/sub 2//sup -/), the role of paraquat and active oxygen species in NADPH-dependent lung microsomal lipid peroxidation was investigated. Incubation of buffered aerobic mixture of bovine lung microsome and NADPH, in the presence or absence of exogenously added iron, resulted in a progressive formation of lipid peroxides whose accumulation could be followed at 535 nm as malondialdehyde. Paraquat strongly inhibited this lipid peroxidation, Thus, malondialydehyde formation was 50% inhibited by 4 X 10/sup -5/ M paraquat in the reaction mixture. The malondialdehyde color development by lipid peroxides was not affected by this concentration of paraquat. Lipid peroxidation was also strongly inhibited by singlet oxygen scavengers, e.g. dimethylfuran and diphenylfuran, and by catalase. Hydroxyl radical scavengers, e.g. mannitol, benzoate, and ethanol, had little effect in malondialydehyde production. Superoxide dismutase, which removes O/sub 2//sup -/ efficiently, did not inhibit malondialdehyde production by lung microsomes and rather enhanced its formation. A scheme in which paraquat and active O/sub 2/ species may be involved with microsomal lipid peroxidation is presented.

Research Organization:
Univ. of California, Davis
OSTI ID:
5765034
Journal Information:
J. Biol. Chem.; (United States), Journal Name: J. Biol. Chem.; (United States) Vol. 256:19; ISSN JBCHA
Country of Publication:
United States
Language:
English