skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Altered glycosaminoglycan metabolism in injured arterial wall

Journal Article · · Exp. Mol. Pathol.; (United States)

Glycosaminoglycans (GAG) are believed to be important in the pathogenesis of atherosclerosis. We have previously demonstrated that areas of injured aorta that have been re-endothelialized accumulate increased amounts of lipid and GAG when compared to areas remaining de-endothelialized. We have now examined the net incorporation of labeled precursors into the individual GAG present in both re-endothelialized and de-endothelialized areas of rabbit aorta. Aortic tissue was examined at 2-3 and 10-14 weeks after a denuding injury by incubating tissue minces with (/sup 3/H)glucosamine and sodium (/sup 35/S)sulfate for 24 hr. Following incubation, the aortic GAG were isolated and assayed for uronic acid concentration and radioactivity. Results indicate that the total GAG concentration was significantly greater in the re-endothelialized as compared to de-endothelialized areas. The concentration in uninjured aorta was 9.01. The difference between the injured tissues was attributable to increased concentrations of sulfated GAG. Hyaluronic acid and chondroitin sulfate were the most metabolically active of the GAG in either uninjured or injured aorta, together accounting for over 75% of the /sup 3/H label. The /sup 3/H specific radioactivities of the four GAG in the short-term, re-endothelialized subgroup were all increased nearly twice that found in uninjured and de-endothelialized tissues. With the exception of heparan sulfate, no significant differences were noted in the /sup 3/H specific radioactivities between the re-endothelialized and de-endothelialized areas in the long-term subgroup. These results indicate that, relative to adjacent areas of de-endothelialization, GAG preferentially accumulate in re-endothelialized areas even as early as 2-3 weeks following a denuding injury.

OSTI ID:
5095713
Journal Information:
Exp. Mol. Pathol.; (United States), Vol. 3
Country of Publication:
United States
Language:
English

Similar Records