Magnetoreflectivity of Pb{sub 1{minus}x}Eu{sub x}Te epilayers and PbTe/Pb{sub 1{minus}x}Eu{sub x}Te multiple quantum wells
- Institut fuer Halbleiterphysik, Johannes Kepler Universitaet, A-4040 Linz (Austria)
- School of Electrical Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States)
Molecular-beam epitaxy grown n-type Pb{sub 1{minus}x}Eu{sub x}Te epilayers (x{le}0.034) and PbTe/Pb{sub 1{minus}x}Eu{sub x}Te (x{le}0.039) multiple-quantum-well (MQW) samples were studied by magnetoreflectivity in the Faraday configuration (B{parallel}[111]) for magnetic fields up to 6T at 4.2 K. Since the IV-VI lead salt compounds are quite polar semiconductors, resonant electron-longitudinal-optic- (LO-) phonon coupling (Fr{umlt o}hlich coupling) modifies the cyclotron resonance (CR) energies in the Pb{sub 1{minus}x}Eu{sub x}Te single epilayers for the three-dimensional (3D) case. Due to the many-valley band structure {ital two} different Fr{umlt o}hlich coupling constants are relevant. However, the CR energies of quasi-two-dimensional (2D) carriers in PbTe wells [n{sup 2D}=(1.5{minus}3){times}10{sup 11}cm{sup {minus}2}] of PbTe/Pb{sub 1{minus}x}Eu{sub x}Te MQW samples do {ital not} exhibit a significant resonant electron-LO-phonon interaction. This observation is attributed to finite-electron concentration effects, in particular, to a partial filling of the lowest 2D Landau spin level. The static and dynamic screening of the polar interaction are considered as well, but are ruled out as an explanation for the absence of any remarkable polaron correction to the CR energies of electrons in the PbTe quantum wells for the range of carrier concentrations investigated. The magnetoreflectivity spectra of Pb{sub 1{minus}x}Eu{sub x}Te single layers and PbTe/Pb{sub 1{minus}x}Eu{sub x}Te quantum well samples are simulated numerically, using a model for the dielectric response of which also includes the electron-LO-phonon interaction. The transverse and longitudinal masses, and thus also the interband momentum matrix elements are determined for Pb{sub 1{minus}x}Eu{sub x}Te as a function of the composition up to x{lt}0.034. It is found that the transverse mass {ital increases} with Eu content, whereas the longitudinal one nearly stays constant. (Abstract Truncated)
- OSTI ID:
- 489572
- Journal Information:
- Physical Review, B: Condensed Matter, Journal Name: Physical Review, B: Condensed Matter Journal Issue: 7 Vol. 55; ISSN PRBMDO; ISSN 0163-1829
- Country of Publication:
- United States
- Language:
- English
Similar Records
Electronic structure of Pb/sub 1-x/Eu/sub x/Te alloys
Stability of group IV-VI semiconductor alloys