Oxide film formation from Electron Cyclotron Resonance (ECR) plasmas
- and others
The formation of SiO{sub x} films and fluorine-doped SiO{sub x} films using electron cyclotron resonance (ECR) plasma deposition is described. Parametric studies of the film composition and hydrogen content as a function of feed gas composition and RF biasing are presented. By replacing SiH{sub 4} with SiF{sub 4} in the gas feed, samples with F content from 2 at.% F to 12 at.% F are deposited, and the dielectric constant of the deposited layers decrease linearly with increasing fluorine concentration. The stability of these low dielectric constant SiO{sub x}F{sub y} layers is examined under hydrating conditions, and conditions typically found for interlayer dielectric processing in microelectronics. The hydrogen content of the SiO{sub 2} and F-doped SiO{sub 2} is characterized as a function of deposition conditions, and a model is given to describe the thermal release of H from SiO{sub 2}.
- Research Organization:
- Sandia National Labs., Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE Office of Energy Research, Washington, DC (United States)
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 481903
- Report Number(s):
- SAND--97-0082C; CONF-970517--6; ON: DE97006368
- Country of Publication:
- United States
- Language:
- English
Similar Records
Low dielectric constant, fluorine-doped SiO{sub 2} for intermetal dielectric
Silicon nitride formation from a silane-nitrogen ECR (electron cyclotron resonance) plasma