Heat transport in thin dielectric films
- Department of Materials Science and Engineering, and the Coordinated Science Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)
Heat transport in 20{endash}300 nm thick dielectric films is characterized in the temperature range of 78{endash}400 K using the 3{omega} method. SiO{sub 2} and SiN{sub x} films are deposited on Si substrates at 300{degree}C using plasma enhanced chemical vapor deposition (PECVD). For films {gt}100 nm thick, the thermal conductivity shows little dependence on film thickness: the thermal conductivity of PECVD SiO{sub 2} films is only {approximately}10{percent} smaller than the conductivity of SiO{sub 2} grown by thermal oxidation. The thermal conductivity of PECVD SiN{sub x} films is approximately a factor of 2 smaller than SiN{sub x} deposited by atmospheric pressure CVD at 900{degree}C. For films {lt}50 nm thick, the apparent thermal conductivity of both SiO{sub 2} and SiN{sub x} films decreases with film thickness. The thickness dependent thermal conductivity is interpreted in terms of a small interface thermal resistance R{sub I}. At room temperature, R{sub I}{approximately}2{times}10{sup {minus}8} Km{sup 2}W{sup {minus}1} and is equivalent to the thermal resistance of a {approximately}20 nm thick layer of SiO{sub 2}. {copyright} {ital 1997 American Institute of Physics.}
- Research Organization:
- University of Illinois
- DOE Contract Number:
- FG02-91ER45439
- OSTI ID:
- 467223
- Journal Information:
- Journal of Applied Physics, Journal Name: Journal of Applied Physics Journal Issue: 6 Vol. 81; ISSN JAPIAU; ISSN 0021-8979
- Country of Publication:
- United States
- Language:
- English
Similar Records
Electrical dependence on the chemical composition of the gate dielectric in indium gallium zinc oxide thin-film transistors
Gas diffusion ultrabarriers on polymer substrates using Al{sub 2}O{sub 3} atomic layer deposition and SiN plasma-enhanced chemical vapor deposition
Effective passivation of the low resistivity silicon surface by a rapid thermal oxide/plasma silicon nitride stack
Journal Article
·
Mon Jul 13 00:00:00 EDT 2015
· Applied Physics Letters
·
OSTI ID:22483202
Gas diffusion ultrabarriers on polymer substrates using Al{sub 2}O{sub 3} atomic layer deposition and SiN plasma-enhanced chemical vapor deposition
Journal Article
·
Wed Jul 15 00:00:00 EDT 2009
· Journal of Applied Physics
·
OSTI ID:21359324
Effective passivation of the low resistivity silicon surface by a rapid thermal oxide/plasma silicon nitride stack
Journal Article
·
Tue Mar 31 23:00:00 EST 1998
· Applied Physics Letters
·
OSTI ID:624848