Growth and structure of In{sub 0.5}Ga{sub 0.5}Sb quantum dots on GaP(001)
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany)
- Zentraleinrichtung Elektronenmikroskopie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany)
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany)
Stranski-Krastanov (SK) growth of In{sub 0.5}Ga{sub 0.5}Sb quantum dots (QDs) on GaP(001) by metalorganic vapor phase epitaxy is demonstrated. A thin GaAs interlayer prior to QD deposition enables QD nucleation. The impact of a short Sb-flush before supplying InGaSb is investigated. QD growth gets partially suppressed for GaAs interlayer thicknesses below 6 monolayers. QD densities vary from 5 × 10{sup 9} to 2 × 10{sup 11} cm{sup −2} depending on material deposition and Sb-flush time. When In{sub 0.5}Ga{sub 0.5}Sb growth is carried out without Sb-flush, the QD density is generally decreased, and up to 60% larger QDs are obtained.
- OSTI ID:
- 22594292
- Journal Information:
- Applied Physics Letters, Journal Name: Applied Physics Letters Journal Issue: 10 Vol. 109; ISSN APPLAB; ISSN 0003-6951
- Country of Publication:
- United States
- Language:
- English
Similar Records
Temperature-dependent energy band gap variation in self-organized InAs quantum dots
In-plane self-arrangement of high-density InAs quantum dots on GaAsSb/GaAs(001) by molecular beam epitaxy
Origins of interlayer formation and misfit dislocation displacement in the vicinity of InAs/GaAs quantum dots
Journal Article
·
Mon Oct 10 00:00:00 EDT 2011
· Applied Physics Letters
·
OSTI ID:22027773
In-plane self-arrangement of high-density InAs quantum dots on GaAsSb/GaAs(001) by molecular beam epitaxy
Journal Article
·
Tue May 01 00:00:00 EDT 2007
· Journal of Applied Physics
·
OSTI ID:20982852
Origins of interlayer formation and misfit dislocation displacement in the vicinity of InAs/GaAs quantum dots
Journal Article
·
Mon Jul 21 00:00:00 EDT 2014
· Applied Physics Letters
·
OSTI ID:22311143