Formation of strain-induced quantum dots in gated semiconductor nanostructures
- Quantum Measurement Division, NIST, Gaithersburg, Maryland (United States)
A long-standing mystery in the field of semiconductor quantum dots (QDs) is: Why are there so many unintentional dots (also known as disorder dots) which are neither expected nor controllable. It is typically assumed that these unintentional dots are due to charged defects, however the frequency and predictability of the location of the unintentional QDs suggests there might be additional mechanisms causing the unintentional QDs besides charged defects. We show that the typical strains in a semiconductor nanostructure from metal gates are large enough to create strain-induced quantum dots. We simulate a commonly used QD device architecture, metal gates on bulk silicon, and show the formation of strain-induced QDs. The strain-induced QD can be eliminated by replacing the metal gates with poly-silicon gates. Thus strain can be as important as electrostatics to QD device operation operation.
- OSTI ID:
- 22492291
- Journal Information:
- AIP Advances, Journal Name: AIP Advances Journal Issue: 8 Vol. 5; ISSN AAIDBI; ISSN 2158-3226
- Country of Publication:
- United States
- Language:
- English
Similar Records
Lithographically defined few-electron silicon quantum dots based on a silicon-on-insulator substrate
Self-aligned epitaxial metal-semiconductor hybrid nanostructures for plasmonics