skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Temperature quenching of spontaneous emission in tunnel-injection nanostructures

Journal Article · · Semiconductors
 [1];  [2];  [3]
  1. St. Petersburg State University, Fock Institute of Physics (Russian Federation)
  2. Russian Academy of Sciences, Academic University, Nanotechnology Center (Russian Federation)
  3. Martin Luther University Halle-Wittenberg, ICMS (Germany)

The spontaneous-emission spectra in the near-IR range (0.8–1.3 μm) from inverted tunnel-injection nanostructures are measured. These structures contain an InAs quantum-dot layer and an InGaAs quantum-well layer, separated by GaAs barrier spacer whose thickness varies in the range 3–9 nm. The temperature dependence of this emission in the range 5–295 K is investigated, both for optical excitation (photoluminescence) and for current injection in p–n junction (electroluminescence). At room temperature, current pumping proves more effective for inverted tunnel-injection nanostructures with a thin barrier (<6 nm), when the apexes of the quantum dots connect with the quantum well by narrow InGaAs straps (nanobridges). In that case, the quenching of the electroluminescence by heating from 5 to 295 K is slight. The quenching factor S{sub T} of the integrated intensity I is S{sub T} = I{sub 5}/I{sub 295} ≈ 3. The temperature stability of the emission from inverted tunnel-injection nanostructures is discussed on the basis of extended Arrhenius analysis.

OSTI ID:
22469692
Journal Information:
Semiconductors, Vol. 49, Issue 11; Other Information: Copyright (c) 2015 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-7826
Country of Publication:
United States
Language:
English