skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A prototype, glassless densitometer traceable to primary optical standards for quantitative radiochromic film dosimetry

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4922134· OSTI ID:22413619
; ;  [1];  [2]
  1. Department of Medical Physics, University of Wisconsin–Madison, Madison, Wisconsin 53705 (United States)
  2. National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

Purpose: To evaluate a prototype densitometer traceable to primary optical standards and compare its performance to an EPSON Expression{sup ®} 10000XL flatbed scanner (the Epson) for quantitative radiochromic film (RCF) dosimetry. Methods: A prototype traceable laser densitometry system (LDS) was developed to mitigate common film scanning artifacts, such as positional scan dependence and high noise in low-dose regions, by performing point-based measurements of RCF suspended in free-space using coherent light. The LDS and the Epson optical absorbance scales were calibrated up to 3 AU, using reference materials calibrated at a primary standards laboratory and a scanner calibration factor (SCF). Calibrated optical density (OD) was determined for 96 Gafchromic{sup ®} EBT3 film segments before and after irradiation to one of 16 dose levels between 0 and 10 Gy, exposed to {sup 60}Co in a polymethyl-methacrylate (PMMA) phantom. The sensitivity was determined at each dose level and at two rotationally orthogonal readout orientations to obtain the sensitometric response of each RCF dosimetry system. LDS rotational scanning dependence was measured at nine angles between 0°and 180°, due to the expected interference between coherent light and polarizing EBT3 material. The response curves were fit to the analytic functions predicted by two physical response models: the two-parameter single-hit model and the four-parameter percolation model. Results: The LDS and the Epson absorbance measurements were linear to primary optical standards to within 0.2% and 0.3% up to 2 and 1 AU, respectively. At higher densities, the LDS had an over-response (2.5% at 3 AU) and the Epson an under-response (3.1% and 9.8% at 2 and 3 AU, respectively). The LDS and the Epson SCF over the applicable range were 0.968% ± 0.2% and 1.561% ± 0.3%, respectively. The positional scan dependence was evaluated on each digitizer and shown to be mitigated on the LDS, as compared to the Epson. Maximum EBT3 rotational dependence was found to have a strong dependence on dose (0.1% and 34% at 30 mGy and 5 Gy, respectively). The preferred EBT3 polymerization axis angle was constant within experimental uncertainties. In its most sensitive orientation, the LDS-measured EBT3 sensitivity was 7.13 × 10{sup −4} ± 9.2 × 10{sup −6} AU/mGy, which represented a 4.5 fold increase over the Epson of 1.58 × 10{sup −4} ± 9.8 × 10{sup −6} AU/mGy. To first order approximations, EBT3 response was linear up to 500 mGy to within 0.80% and to within 7.5% for the most sensitive LDS and the Epson orientations, respectively. The corresponding single-hit and percolation model relative residual norms were 0.082 and 0.074 for LDS as compared to 0.29 and 0.18 for the Epson, which represented a significant increase in LDS-measured agreement with the simple physical model. Less sensitive LDS and the Epson orientations showed a marked decrease in the physical model agreement, which suggested that suboptimal readout device characteristics may be the origin of the complex sensitometric functional forms currently required for accurate RCF dosimetry. Conclusions: The prototype densitometer was shown to be superior to a conventional scanner for quantitative RCF dosimetry based on physical models of film response. The Epson was shown to be a reliable tool for routine RCF dosimetry in a clinical setting, yet calibration to primary optical standards did not mitigate the necessity for complex, empirical functional form fitting.

OSTI ID:
22413619
Journal Information:
Medical Physics, Vol. 42, Issue 7; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English