skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A prototype quantitative film scanner for radiochromic film dosimetry

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.2828203· OSTI ID:21036151
; ; ; ; ;  [1]
  1. Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610 (United States)

We have developed a high resolution, quantitative, two-dimensional optical film scanner for use with a commercial high sensitivity radiochromic film (RCF) for measuring single fraction external-beam radiotherapy dose distributions. The film scanner was designed to eliminate artifacts commonly observed in RCF dosimetry. The scanner employed a stationary light source and detector with a moving antireflective glass film platen attached to a high precision computerized X-Y translation stage. An ultrabright red light emitting diode (LED) with a peak output at 633 nm and full width at half maximum (FWHM) of 16 nm was selected as the scanner light source to match the RCF absorption peak. A dual detector system was created using two silicon photodiode detectors to simultaneously measure incident and transmitted light. The LED light output was focused to a submillimeter (FWHM 0.67 mm) spot size, which was determined from a scanning knife-edge technique for measuring Gaussian optical beams. Data acquisition was performed with a 16-bit A/D card in conjunction with commercial software. The linearity of the measured densities on the scanner was tested using a calibrated neutral-density step filter. Sensitometric curves and three IMRT field scans were acquired with a spatial resolution of 1 mm for both radiographic film and RCF. The results were compared with measurements taken with a commercial diode array under identical delivery conditions. The RCF was rotated by 90 deg. and rescanned to study orientation effects. Comparison between the RCF and the diode array measurements using percent dose difference and distance-to-agreement criteria produced average passing rates of 99.0% using 3%/3 mm criteria and 96.7% using 2%/2 mm criteria. The same comparison between the radiographic film and diode array measurements resulted in average passing rates 96.6% and 91.6% for the above two criteria, respectively. No measurable light-scatter or interference scanner artifacts were observed. The RCF rotated by 90 deg. showed no measurable orientation effect. A scan of a 15x15 cm{sup 2} area with 1 mm resolution required 22 min to acquire. The LED densitometer provides an accurate film dosimetry system with 1 mm or better resolution. The scanner eliminates the orientation dependence of RCF dosimetry that was previously reported with commercial flatbed scanners.

OSTI ID:
21036151
Journal Information:
Medical Physics, Vol. 35, Issue 2; Other Information: DOI: 10.1118/1.2828203; (c) 2008 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English