skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Gafchromic EBT2 film dosimetry in reflection mode with a novel plan-based calibration method

Abstract

Purpose:A dosimetric system formed by Gafchromic EBT2 radiochromic film and Epson Expression 10000XL flatbed scanner was commissioned for dosimetry. In this paper, several open questions concerning the commissioning of radiochromic films for dosimetry were addressed: (a) is it possible to employ this dosimetric system in reflection mode; (b) if so, can the methods used in transmission mode also be used in reflection mode; (c) is it possible to obtain accurate absolute dose measurements with Gafchromic EBT2 films; (d) which calibration method should be followed; (e) which calibration models should be used; and (f) does three-color channel dosimetry offer a significant improvement over single channel dosimetry. The purpose of this paper is to help clarify these questions. Methods: In this study, films were scanned in reflection mode, the effect of surrounding film was evaluated and the feasibility of EBT2 film dosimetry in reflection mode was studied. EBT2's response homogeneity has been reported to lead to excessive dose uncertainties. To overcome this problem, a new plan-based calibration method was implemented. Plan-based calibration can use every pixel and each of the three color channels of the scanned film to obtain the parameters of the calibration model. A model selection analysis was conducted tomore » select lateral correction and sensitometric curve models. The commonly used calibration with fragments was compared with red-channel plan-based calibration and with three-channel plan-based calibration. Results: No effect of surrounding film was found in this study. The film response inhomogeneity in EBT2 films was found to be important not only due to differences in the fog but also due to differences in sensitivity. The best results for lateral corrections were obtained using absolute corrections independent of the dose. With respect to the sensitometric curves, an empirical polynomial fit of order 4 was found to obtain results equivalent to a gamma-distributed single hit model based on physical assumptions. Three-channel dosimetry was found to be substantially superior to red-channel dosimetry. Conclusions: Reflection mode with Gafchromic EBT2 radiochromic film was found to be a viable alternative to transmission mode. The same methods that are used in transmission mode can be followed in reflection mode. A novel plan-based method was developed for calibration and multichannel dosimetry. This novel method offers increased robustness against film response inhomogeneities and reduces considerably the time required for calibration.« less

Authors:
; ; ; ;  [1]
  1. Department of Medical Physics, Institute of Oncology Ljubljana, Zaloska cesta 2, Ljubljana 1000 (Slovenia)
Publication Date:
OSTI Identifier:
22099175
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 40; Journal Issue: 1; Other Information: (c) 2013 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
61 RADIATION PROTECTION AND DOSIMETRY; 60 APPLIED LIFE SCIENCES; CALIBRATION; FILM DOSIMETRY; POLYNOMIALS; RADIATION DOSES; SENSITIVITY; THIN FILMS

Citation Formats

Mendez, I., Hartman, V., Hudej, R., Strojnik, A., and Casar, B.. Gafchromic EBT2 film dosimetry in reflection mode with a novel plan-based calibration method. United States: N. p., 2013. Web. doi:10.1118/1.4772075.
Mendez, I., Hartman, V., Hudej, R., Strojnik, A., & Casar, B.. Gafchromic EBT2 film dosimetry in reflection mode with a novel plan-based calibration method. United States. doi:10.1118/1.4772075.
Mendez, I., Hartman, V., Hudej, R., Strojnik, A., and Casar, B.. Tue . "Gafchromic EBT2 film dosimetry in reflection mode with a novel plan-based calibration method". United States. doi:10.1118/1.4772075.
@article{osti_22099175,
title = {Gafchromic EBT2 film dosimetry in reflection mode with a novel plan-based calibration method},
author = {Mendez, I. and Hartman, V. and Hudej, R. and Strojnik, A. and Casar, B.},
abstractNote = {Purpose:A dosimetric system formed by Gafchromic EBT2 radiochromic film and Epson Expression 10000XL flatbed scanner was commissioned for dosimetry. In this paper, several open questions concerning the commissioning of radiochromic films for dosimetry were addressed: (a) is it possible to employ this dosimetric system in reflection mode; (b) if so, can the methods used in transmission mode also be used in reflection mode; (c) is it possible to obtain accurate absolute dose measurements with Gafchromic EBT2 films; (d) which calibration method should be followed; (e) which calibration models should be used; and (f) does three-color channel dosimetry offer a significant improvement over single channel dosimetry. The purpose of this paper is to help clarify these questions. Methods: In this study, films were scanned in reflection mode, the effect of surrounding film was evaluated and the feasibility of EBT2 film dosimetry in reflection mode was studied. EBT2's response homogeneity has been reported to lead to excessive dose uncertainties. To overcome this problem, a new plan-based calibration method was implemented. Plan-based calibration can use every pixel and each of the three color channels of the scanned film to obtain the parameters of the calibration model. A model selection analysis was conducted to select lateral correction and sensitometric curve models. The commonly used calibration with fragments was compared with red-channel plan-based calibration and with three-channel plan-based calibration. Results: No effect of surrounding film was found in this study. The film response inhomogeneity in EBT2 films was found to be important not only due to differences in the fog but also due to differences in sensitivity. The best results for lateral corrections were obtained using absolute corrections independent of the dose. With respect to the sensitometric curves, an empirical polynomial fit of order 4 was found to obtain results equivalent to a gamma-distributed single hit model based on physical assumptions. Three-channel dosimetry was found to be substantially superior to red-channel dosimetry. Conclusions: Reflection mode with Gafchromic EBT2 radiochromic film was found to be a viable alternative to transmission mode. The same methods that are used in transmission mode can be followed in reflection mode. A novel plan-based method was developed for calibration and multichannel dosimetry. This novel method offers increased robustness against film response inhomogeneities and reduces considerably the time required for calibration.},
doi = {10.1118/1.4772075},
journal = {Medical Physics},
number = 1,
volume = 40,
place = {United States},
year = {Tue Jan 15 00:00:00 EST 2013},
month = {Tue Jan 15 00:00:00 EST 2013}
}
  • Purpose: The purpose of this study is to determine the effect on the measured optical density of scanning on either side of a Gafchromic EBT and EBT2 film using an Epson (Epson Canada Ltd., Toronto, Ontario) 10000XL flat bed scanner. Methods: Calibration curves were constructed using EBT2 film scanned in landscape orientation in both reflection and transmission mode on an Epson 10000XL scanner. Calibration curves were also constructed using EBT film. Potential errors due to an optical density difference from scanning the film on either side (''face up'' or ''face down'') were simulated. Results: Scanning the film face up ormore » face down on the scanner bed while keeping the film angular orientation constant affects the measured optical density when scanning in reflection mode. In contrast, no statistically significant effect was seen when scanning in transmission mode. This effect can significantly affect relative and absolute dose measurements. As an application example, the authors demonstrate potential errors of 17.8% by inverting the film scanning side on the gamma index for 3%--3 mm criteria on a head and neck intensity modulated radiotherapy plan, and errors in absolute dose measurements ranging from 10% to 35% between 2 and 5 Gy. Conclusions: Process consistency is the key to obtaining accurate and precise results in Gafchromic film dosimetry. When scanning in reflection mode, care must be taken to place the film consistently on the same side on the scanner bed.« less
  • Purpose: Small field dosimetry is prone to uncertainties due to the lack of electronic equilibrium and the use of the correct detector size relative to the field size measured. It also exhibits higher sensitivity to setup errors as well as large variation in output with field size and shape. Radiochromic film is an attractive method for reference dosimetry in small fields due to its ability to provide 2D dose measurements while having minimal impact on the dose distribution. Gafchromic EBT2 has a dose range of up to 40 Gy; therefore, it could potentially be useful for high dose reference dosimetrymore » with high spatial resolution. This is a requirement in stereotactic radiosurgery deliveries, which deliver high doses per fraction to small targets. Methods: Targets of 4 mm and 12 mm diameters were treated to a minimum peripheral dose of 21 Gy prescribed to 80% of the maximum dose in one fraction. Target doses were measured with EBT2 film (both targets) and an ion chamber (12 mm target only). Measured doses were compared with planned dose distributions using profiles through the target and minimum peripheral dose coverage. Results: The measured target doses and isodose coverage agreed with the planned dose within {+-}1 standard deviation of three measurements, which were 2.13% and 2.5% for the 4 mm and 12 mm targets, respectively. Conclusions: EBT2 film is a feasible dosimeter for high dose per fraction reference 2D dosimetry.« less
  • Purpose: Radiosurgery uses small fields and high-radiation doses to treat intra- and extracranial lesions in a single session. The lack of a lateral electronic equilibrium and the presence of high-dose gradients in these fields are challenges for adequate measurements. The availability of radiation detectors with the high spatial resolution required is restricted to only a few. Stereotactic diodes and EBT radiochromic films have been demonstrated to be good detectors for small-beam dosimetry. Because the stereotactic diode is the standard measurement for the dosimetry of radiosurgical beams, the goal of this work was to perform measurements with the radiochromic film Gafchromic{supmore » Registered-Sign} EBT2 and compare its results with a stereotactic diode. Methods: Total scatter factors, tissue maximum, and off-axis ratios from a 6 MV small photon beams were measured using EBT2 radiochromic film in a water phantom. The film-measured data were evaluated by comparing it with the data measured with a stereotactic field diode (IBA-Dosimetry). Results: The film and diode measurements had excellent agreement. The differences between the detectors were less than or equal to 2.0% for the tissue maximum and the off-axis ratios. However, for the total scatter factors, there were significant differences, up to 4.9% (relative to the reference field), for field sizes less than 1.0 cm. Conclusions: This work found that the Gafchromic{sup Registered-Sign} EBT2 film is adequate for small photon beam measurements, particularly for tissue maximum and off-axis ratios. However, careful attention must be taken when measuring output factors of small beams below 1.0 cm due to the film's energy dependence. The measurement differences may be attributable to the film's active layer composition because EBT2 incorporates higher Z elements (i.e., bromide and potassium), hence revealing a potential energy dependence for the dosimetry of small photon beams.« less
  • Purpose: The authors aim was to investigate the effects of using transmission and reflection scanning modes, the film orientation during scanning, and ambient room light on a dosimetry system based on the Gafchromic{sup TM} EBT2 film model. Methods: For calibration, the films were cut to 3 x 3 cm{sup 2} and irradiated from 20 to 700 cGy at the depth of maximum dose using 6 and 10 MV photon beams in a 10 x 10 cm{sup 2} field size. Absolute dose calibration of the linear accelerator was done according to the TRS398 protocol. An FG65-G ionization chamber was used tomore » monitor the dose while irradiating the films in solid water. The film pieces were scanned with an EPSON Expression 1680 Pro flatbed scanner in transmission and reflection modes. Authors investigated the effect of orientation on films and examined the optical properties of EBT2 film using an ellipsometer and an ultraviolet (UV)/visible spectrometer to explain the dosimetric dependence of the film on orientation during the scanning process. To investigate the effect of ambient room light, films were preirradiated in 6 and 10 MV photon beams with intensity-modulated radiotherapy (IMRT) quality assurance (QA) plans, and then exposed to room light, either directly for 2 days in a workroom or for 2 months in a film box. Gamma index pass criteria of (3%, 3 mm) were used. Results: The dose response curves based on net optical density (NOD) indicated that the reflection scanning mode can provide a better dose sensitivity than the transmission scanning mode, whereas the standard deviation of the dose is greater in reflection mode than in transmission mode. When the film was rotated 90 deg. from the portrait orientation, the average dose of the EBT2 film decreased by 11.5-19.6% in transmission mode and by 1.5-2.3% in reflection mode. Using an ellipsometer, variation of the refractive index of EBT2 film--the birefringence property--was found to be the largest between 45 deg. (1.72 and 1.71) and 135 deg. (1.8 and 1.77) for 300 and 800 cGy. Absorption spectra of EBT2 films measured with spectrometer were the function of film orientation. The readings in reflection scanning mode were more stable against room light than those in transmission scanning mode, although dose readings increased in both modes after the films were exposed to room light. Conclusions: The transmission scanning mode exhibited a strong dependence on film orientation during scanning and a change in optical density resulting from room light exposure, so a constant scanning orientation and minimal exposure to light can reduce uncertainty in the measured dose (23 {+-} 3%). The angular dependence was analyzed using Jones matrices and optical properties of EBT2 film were obtained using an ellipsometer and an UV/visible spectrometer. The reflection scanning mode has relatively good stability with respect to room light and film orientation on a scanner, although the large standard deviation of dose is a disadvantage in measurements of absolute dose. Reflection scanning mode can offer a potential advantage for film dosimetry in radiotherapy, although transmission scanning mode is still recommended for dosimetry as it provides better uncertainty results.« less
  • Purpose: The authors investigated the energy response of XR-QA2 GafChromic{sup TM} film over a broad energy range used in diagnostic radiology examinations. The authors also made an assessment of the most suitable functions for both reference and relative dose measurements. Methods: Pieces of XR-QA2 film were irradiated to nine different values of air kerma in air, following reference calibration of a number of beam qualities ranging in HVLs from 0.16 to 8.25 mm Al, which corresponds to effective energy range from 12.7 keV to 56.3 keV. For each beam quality, the authors tested three functional forms (rational, linear exponential, andmore » power) to assess the most suitable function by fitting the delivered air kerma in air as a function of film response in terms of reflectance change. The authors also introduced and tested a new parameterχ = netΔR·e{sup m} {sup netΔR} that linearizes the inherently nonlinear response of the film. Results: The authors have found that in the energy range investigated, the response of the XR-QA2 based radiochromic film dosimetry system ranges from 0.222 to 0.420 in terms of netΔR at K{sub air}{sup air} = 8 cGy. For beam qualities commonly used in CT scanners (4.03–8.25 mm Al), the variation in film response (netΔR at K{sub air}{sup air} = 8 cGy) amounts to ± 5%, while variation in K{sub air}{sup air} amounts to ± 14%. Conclusions: Results of our investigation revealed that the use of XR-QA2 GafChromic{sup TM} film is accompanied by a rather pronounced energy dependent response for beam qualities used for x-ray based diagnostic imaging purposes. The authors also found that the most appropriate function for the reference radiochromic film dosimetry would be the power function, while for the relative dosimetry one may use the exponential response function that can be easily linearized.« less