skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sci—Thur AM: YIS - 06: An EPID-based 3D patient dose verification method for SBRT-VMAT delivery

Abstract

Purpose: Stereotactic body radiation therapy (SBRT) delivered via volumetric modulated arc therapy (VMAT) can strongly benefit from an in vivo patient dose verification due to the large doses per fraction. Electronic portal imaging devices (EPIDs) can be utilized as a patient dose dosimeter. In this work we present a physics-based model which utilizes on-treatment EPID images to reconstruct the dose delivered to an anthropomorphic phantom during SBRT-VMAT delivery. Methods: An SBRT linac beam was modeled using Monte Carlo methods and verified with measured data. Our dose reconstruction model back-projects EPID measured focal fluence upstream of the patient and adds a predicted extra-focal fluence component. This fluence is forward projected onto the patient's density matrix and convolved with dose kernels to calculate dose. The model was validated for two prostate, three lung, and two spine SBRT-VMAT treatments. Results were compared to the treatment planning system's calculation. Results: 2%/2 mm chi comparison calculations gave pass rates for the whole volume, infield, and high dose region respectively, and no lower than: 98%, 95%, 99% for the prostate plans, 99%, 92%, 85% for the lung plans, and 91%, 85%, 81% for the spine plans. A 3%/3mm calculation gave pass rates no lower than 99%,more » 94%, and 90% for all dose regions for the prostate, lung, and spine respectively. Conclusions: We have developed a physics-based model which calculates delivered dose to phantom (or patient) for SBRT-VMAT delivery using on treatment EPID images. The accuracy of the results has allowed us to test this model clinically.« less

Authors:
 [1];  [2]; ;  [3];  [1];  [2];  [2]
  1. Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba (Canada)
  2. (Canada)
  3. Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba (Canada)
Publication Date:
OSTI Identifier:
22409502
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 8; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; LINEAR ACCELERATORS; LUNGS; MONTE CARLO METHOD; PATIENTS; PHANTOMS; PROSTATE; RADIATION DOSES; RADIOTHERAPY; VERIFICATION; VERTEBRAE

Citation Formats

McCowan, P., Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba, Uytven, E van, Beek, T van, McCurdy, B, Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba, and Department of Radiology, University of Manitoba, Winnipeg Manitoba. Sci—Thur AM: YIS - 06: An EPID-based 3D patient dose verification method for SBRT-VMAT delivery. United States: N. p., 2014. Web. doi:10.1118/1.4894939.
McCowan, P., Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba, Uytven, E van, Beek, T van, McCurdy, B, Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba, & Department of Radiology, University of Manitoba, Winnipeg Manitoba. Sci—Thur AM: YIS - 06: An EPID-based 3D patient dose verification method for SBRT-VMAT delivery. United States. doi:10.1118/1.4894939.
McCowan, P., Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba, Uytven, E van, Beek, T van, McCurdy, B, Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba, and Department of Radiology, University of Manitoba, Winnipeg Manitoba. Fri . "Sci—Thur AM: YIS - 06: An EPID-based 3D patient dose verification method for SBRT-VMAT delivery". United States. doi:10.1118/1.4894939.
@article{osti_22409502,
title = {Sci—Thur AM: YIS - 06: An EPID-based 3D patient dose verification method for SBRT-VMAT delivery},
author = {McCowan, P. and Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba and Uytven, E van and Beek, T van and McCurdy, B and Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba and Department of Radiology, University of Manitoba, Winnipeg Manitoba},
abstractNote = {Purpose: Stereotactic body radiation therapy (SBRT) delivered via volumetric modulated arc therapy (VMAT) can strongly benefit from an in vivo patient dose verification due to the large doses per fraction. Electronic portal imaging devices (EPIDs) can be utilized as a patient dose dosimeter. In this work we present a physics-based model which utilizes on-treatment EPID images to reconstruct the dose delivered to an anthropomorphic phantom during SBRT-VMAT delivery. Methods: An SBRT linac beam was modeled using Monte Carlo methods and verified with measured data. Our dose reconstruction model back-projects EPID measured focal fluence upstream of the patient and adds a predicted extra-focal fluence component. This fluence is forward projected onto the patient's density matrix and convolved with dose kernels to calculate dose. The model was validated for two prostate, three lung, and two spine SBRT-VMAT treatments. Results were compared to the treatment planning system's calculation. Results: 2%/2 mm chi comparison calculations gave pass rates for the whole volume, infield, and high dose region respectively, and no lower than: 98%, 95%, 99% for the prostate plans, 99%, 92%, 85% for the lung plans, and 91%, 85%, 81% for the spine plans. A 3%/3mm calculation gave pass rates no lower than 99%, 94%, and 90% for all dose regions for the prostate, lung, and spine respectively. Conclusions: We have developed a physics-based model which calculates delivered dose to phantom (or patient) for SBRT-VMAT delivery using on treatment EPID images. The accuracy of the results has allowed us to test this model clinically.},
doi = {10.1118/1.4894939},
journal = {Medical Physics},
number = 8,
volume = 41,
place = {United States},
year = {Fri Aug 15 00:00:00 EDT 2014},
month = {Fri Aug 15 00:00:00 EDT 2014}
}
  • Flattening Filter Free (FFF) beams exhibit high dose rates, reduced head scatter, leaf transmission and leakage radiation. For VMAT lung SABR, treatment time can be significantly reduced using high dose rate FFF beams while maintaining plan quality and accuracy. Another possible advantage offered by FFF beams for VMAT lung SABR is the reduction in peripheral dose. The focus of this study was to investigate and quantify the reduction of peripheral dose offered by FFF beams for VMAT lung SABR. The peripheral doses delivered by VMAT Lung SABR treatments using FFF and flattened beams were investigated for the Varian Truebeam linac.more » This study was conducted in three stages, (1): ion chamber measurement of peripheral dose for various plans, (2): validation of AAA, Acuros XB and Monte Carlo for peripheral dose using measured data, and (3): using the validated Monte Carlo model to evaluate peripheral doses for 6 VMAT lung SABR treatments. Three energies, 6X, 10X, and 10X-FFF were used for all stages. Measured data indicates that 10X-FFF delivers the lowest peripheral dose of the three energies studied. AAA and Acuros XB dose calculation algorithms were identified as inadequate, and Monte Carlo was validated for accurate peripheral dose prediction. The Monte Carlo-calculated VMAT lung SABR plans show a significant reduction in peripheral dose for 10X-FFF plans compared to the standard 6X plans, while no significant reduction was showed when compared to 10X. This reduction combined with shorter treatment time makes 10X-FFF beams the optimal choice for superior VMAT lung SABR treatments.« less
  • Purpose: To develop Monte Carlo models of cell clusters to investigate the relationships between macro- and microscopic dose descriptors, quantify the microdosimetric spread in energy deposition for subcellular targets, and determine how these results depend on the computational model. Methods: Microscopic tissue structure is modelled as clusters of 13 to 150 cells, with cell (nuclear) radii between 5 and 10 microns (2 and 9 microns). Energy imparted per unit mass (specific energy or dose) is scored in the nucleus (D{sub nuc}) and cytoplasm (D{sub cyt}) for incident photon energies from 20 to 370 keV. Dose-to-water (D{sub w,m}) and dose-to-medium (D{submore » m,m}) are compared to D{sub nuc} and D{sub cyt}. Single cells and single nuclear cavities are also simulated. Results: D{sub nuc} and D{sub cyt} are sensitive to the surrounding environment with deviations of up to 13% for a single nucleus/cell compared with a multicellular cluster. These dose descriptors vary with cell and nucleus size by up to 10%. D{sub nuc} and D{sub cyt} differ from D{sub w,m} and D{sub m,m} by up to 32%. The microdosimetric spread is sensitive to whether cells are arranged randomly or in a hexagonal lattice, and whether subcellular compartment sizes are sampled from a normal distribution or are constant throughout the cluster. Conclusions: D{sub nuc} and D{sub cyt} are sensitive to cell morphology, elemental composition and the presence of surrounding cells. The microdosimetric spread was investigated using realistic elemental compositions for the nucleus and cytoplasm, and depends strongly on subcellular compartment size, source energy and dose.« less
  • Purpose: Radiation treatments have become increasingly more complex with the development of volumetric modulated arc therapy (VMAT) and the use of stereotactic body radiation therapy (SBRT). SBRT involves the delivery of substantially larger doses over fewer fractions than conventional therapy. SBRT–VMAT treatments will strongly benefit from in vivo patient dose verification, as any errors in delivery can be more detrimental to the radiobiology of the patient as compared to conventional therapy. Electronic portal imaging devices (EPIDs) are available on most commercial linear accelerators (Linacs) and their documented use for dosimetry makes them valuable tools for patient dose verification. In thismore » work, the authors customize and validate a physics-based model which utilizes on-treatment EPID images to reconstruct the 3D dose delivered to the patient during SBRT–VMAT delivery. Methods: The SBRT Linac head, including jaws, multileaf collimators, and flattening filter, were modeled using Monte Carlo methods and verified with measured data. The simulation provides energy spectrum data that are used by their “forward” model to then accurately predict fluence generated by a SBRT beam at a plane above the patient. This fluence is then transported through the patient and then the dose to the phosphor layer in the EPID is calculated. Their “inverse” model back-projects the EPID measured focal fluence to a plane upstream of the patient and recombines it with the extra-focal fluence predicted by the forward model. This estimate of total delivered fluence is then forward projected onto the patient’s density matrix and a collapsed cone convolution algorithm calculates the dose delivered to the patient. The model was tested by reconstructing the dose for two prostate, three lung, and two spine SBRT–VMAT treatment fractions delivered to an anthropomorphic phantom. It was further validated against actual patient data for a lung and spine SBRT–VMAT plan. The results were verified with the treatment planning system (TPS) (ECLIPSE AAA) dose calculation. Results: The SBRT–VMAT reconstruction model performed very well when compared to the TPS. A stringent 2%/2 mm χ-comparison calculation gave pass rates better than 91% for the prostate plans, 88% for the lung plans, and 86% for the spine plans for voxels containing 80% or more of the prescribed dose. Patient data were 86% for the lung and 95% for the spine. A 3%/3 mm χ-comparison was also performed and gave pass rates better than 93% for all plan types. Conclusions: The authors have customized and validated a robust, physics-based model that calculates the delivered dose to a patient for SBRT–VMAT delivery using on-treatment EPID images. The accuracy of the results indicates that this approach is suitable for clinical implementation. Future work will incorporate this model into both offline and real-time clinical adaptive radiotherapy.« less
  • Ultrasound-guided high-dose-rate prostate brachytherapy (HDR-BT) needle segmentation is performed clinically using live-2D sagittal images. Organ segmentation is then performed using axial images, introducing a source of geometric uncertainty. Sagittally-reconstructed 3D (SR3D) ultrasound enables both needle and organ segmentation, but suffers from shadow artifacts. We present a needle segmentation technique augmenting SR3D with live-2D sagittal images using mechanical probe tracking to mitigate image artifacts and compare it to the clinical standard. Seven prostate cancer patients underwent TRUS-guided HDR-BT during which the clinical and proposed segmentation techniques were completed in parallel using dual ultrasound video outputs. Calibrated needle end-length measurements were usedmore » to calculate insertion depth errors (IDEs), and the dosimetric impact of IDEs was evaluated by perturbing clinical treatment plan source positions. The proposed technique provided smaller IDEs than the clinical approach, with mean±SD of −0.3±2.2 mm and −0.5±3.7mm respectively. The proposed and clinical techniques resulted in 84% and 43% of needles with IDEs within ±3mm, and IDE ranges across all needles of [−7.7mm, 5.9mm] and [−9.3mm, 7.7mm] respectively. The proposed and clinical IDEs lead to mean±SD changes in the volume of the prostate receiving the prescription dose of −0.6±0.9% and −2.0±5.3% respectively. The proposed technique provides improved HDR-BT needle segmentation accuracy over the clinical technique leading to decreased dosimetric uncertainty by eliminating the axial-to-sagittal registration, and mitigates the effect of shadow artifacts by incorporating mechanically registered live-2D sagittal images.« less
  • Dosimetric parameters based on dose-volume histograms (DVH) of contoured structures are routinely used to evaluate dose delivered to target structures and organs at risk. However, the DVH provides no information on the spatial distribution of the dose in situations of repeated fractions with changes in organ shape or size. The aim of this research was to develop methods to more accurately determine geometrically localized, cumulative dose to the bladder wall in intracavitary brachytherapy for cervical cancer. The CT scans and treatment plans of 20 cervical cancer patients were used. Each patient was treated with five high-dose-rate (HDR) brachytherapy fractions ofmore » 600cGy prescribed dose. The bladder inner and outer surfaces were delineated using MIM Maestro software (MIM Software Inc.) and were imported into MATLAB (MathWorks) as 3-dimensional point clouds constituting the “bladder wall”. A point-set registration toolbox for MATLAB, Coherent Point Drift (CPD), was used to non-rigidly transform the bladder-wall points from four of the fractions to the coordinate system of the remaining (reference) fraction, which was chosen to be the emptiest bladder for each patient. The doses were accumulated on the reference fraction and new cumulative dosimetric parameters were calculated. The LENT-SOMA toxicity scores of these patients were studied against the cumulative dose parameters. Based on this study, there was no significant correlation between the toxicity scores and the determined cumulative dose parameters.« less