skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-T-115: Analysis of Patient Specific QA for VMAT by Disease Site and Planning-Delivery System Using the ScandiDos Delta4 Phantom

Abstract

Purpose: To evaluate patient specific quality assurance (PSQA) for the delivery of volumetric modulated arc therapy (VMAT) by disease site. To compare planning-delivery system (PDS) PSQA pass rates in a dual vendor institution. Methods: PSQA is performed for VMAT plans using a ScandiDos Delta4 phantom. Verification plans are calculated using Varian Eclipse and Elekta Monaco treatment planning systems (TPS) for patients treated using Varian Truebeam and Elekta linear accelerators respectively. Individual arcs are delivered to the Delta4 phantoms and assessed using the gamma index pass criterion(3% Dose Deviation(DD%), 3mm Distance to Agreement(DTA),10% dose threshold and 90% gamma index). Results: A total of 287 VMAT plans and 680 arcs were analyzed. The passing rates for VMAT QA plans were 95% and 98% for head/neck and pelvis/prostate plans respectively, and 100% for chest/abdomen, spine, lung Stereotactic Body Radiotherapy (SBRT) and Stereotactic Radiosurgery(SRS) plans. Average gamma indices were: (99 ± 2) % for pelvis/prostate, chest/abdomen and lung SBRT plans, (97 ± 4) % for head and neck plans and (98 ± 3) % for spine plans. The average DD% and DTA pass rates ranged from 82% to 90% and 98% to 99% respectively for plans in different disease sites. Paired t-test analysis (twomore » tails) indicated no significant differences in the gamma indices between plans delivered using different PDS; the P values were: 0.08, 0.45, and 0.94 for lung SBRT, head/neck and pelvis/prostate plans respectively. The statistical power for comparing PDS in different disease sites with an alpha of 0.05 is 1. Conclusion: The Gamma indices based on 3% DD%, 3 mm DTA and 10% dose threshold for the VMAT QA plans in all disease sites were well above 90%, suggesting the possibility of using a more stringent PSQA criterion. No significant differences were observed in the QA of VMAT plans delivered using different PDS.« less

Authors:
; ; ; ; ; ; ; ;  [1];  [2]
  1. Thomas Jefferson University, Philadelphia, PA (United States)
  2. Juniata College, Huntingdon, PA (United States)
Publication Date:
OSTI Identifier:
22545241
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ABDOMEN; CHEST; DISEASES; HEAD; LINEAR ACCELERATORS; LUNGS; NECK; PATIENTS; PELVIS; PHANTOMS; PROSTATE; QUALITY ASSURANCE; RADIATION DOSES; RADIOTHERAPY; SURGERY; VERIFICATION; VERTEBRAE

Citation Formats

Giaddui, T, Hardin, M, Keller, J, Kremmel, E, Peng, C, Doyle, L, Yu, Y, Xiao, Y, Harrison, A, and Fu, M. SU-E-T-115: Analysis of Patient Specific QA for VMAT by Disease Site and Planning-Delivery System Using the ScandiDos Delta4 Phantom. United States: N. p., 2015. Web. doi:10.1118/1.4924476.
Giaddui, T, Hardin, M, Keller, J, Kremmel, E, Peng, C, Doyle, L, Yu, Y, Xiao, Y, Harrison, A, & Fu, M. SU-E-T-115: Analysis of Patient Specific QA for VMAT by Disease Site and Planning-Delivery System Using the ScandiDos Delta4 Phantom. United States. doi:10.1118/1.4924476.
Giaddui, T, Hardin, M, Keller, J, Kremmel, E, Peng, C, Doyle, L, Yu, Y, Xiao, Y, Harrison, A, and Fu, M. 2015. "SU-E-T-115: Analysis of Patient Specific QA for VMAT by Disease Site and Planning-Delivery System Using the ScandiDos Delta4 Phantom". United States. doi:10.1118/1.4924476.
@article{osti_22545241,
title = {SU-E-T-115: Analysis of Patient Specific QA for VMAT by Disease Site and Planning-Delivery System Using the ScandiDos Delta4 Phantom},
author = {Giaddui, T and Hardin, M and Keller, J and Kremmel, E and Peng, C and Doyle, L and Yu, Y and Xiao, Y and Harrison, A and Fu, M},
abstractNote = {Purpose: To evaluate patient specific quality assurance (PSQA) for the delivery of volumetric modulated arc therapy (VMAT) by disease site. To compare planning-delivery system (PDS) PSQA pass rates in a dual vendor institution. Methods: PSQA is performed for VMAT plans using a ScandiDos Delta4 phantom. Verification plans are calculated using Varian Eclipse and Elekta Monaco treatment planning systems (TPS) for patients treated using Varian Truebeam and Elekta linear accelerators respectively. Individual arcs are delivered to the Delta4 phantoms and assessed using the gamma index pass criterion(3% Dose Deviation(DD%), 3mm Distance to Agreement(DTA),10% dose threshold and 90% gamma index). Results: A total of 287 VMAT plans and 680 arcs were analyzed. The passing rates for VMAT QA plans were 95% and 98% for head/neck and pelvis/prostate plans respectively, and 100% for chest/abdomen, spine, lung Stereotactic Body Radiotherapy (SBRT) and Stereotactic Radiosurgery(SRS) plans. Average gamma indices were: (99 ± 2) % for pelvis/prostate, chest/abdomen and lung SBRT plans, (97 ± 4) % for head and neck plans and (98 ± 3) % for spine plans. The average DD% and DTA pass rates ranged from 82% to 90% and 98% to 99% respectively for plans in different disease sites. Paired t-test analysis (two tails) indicated no significant differences in the gamma indices between plans delivered using different PDS; the P values were: 0.08, 0.45, and 0.94 for lung SBRT, head/neck and pelvis/prostate plans respectively. The statistical power for comparing PDS in different disease sites with an alpha of 0.05 is 1. Conclusion: The Gamma indices based on 3% DD%, 3 mm DTA and 10% dose threshold for the VMAT QA plans in all disease sites were well above 90%, suggesting the possibility of using a more stringent PSQA criterion. No significant differences were observed in the QA of VMAT plans delivered using different PDS.},
doi = {10.1118/1.4924476},
journal = {Medical Physics},
number = 6,
volume = 42,
place = {United States},
year = 2015,
month = 6
}
  • Purpose: To test whether unified vendor specified beam conformance for matched machines implies volumetric modulated arc radiotherapy(VMAT) delivery consistency. Methods: Twenty-two identical patient QA plans, eleven 6MV and eleven 15MV, were delivered to the Delta{sup 4}(Scandidos, Uppsala, Sweden) on two Varian TrueBEAM matched machines. Sixteen patient QA plans, nine 6 MV and seven 10 MV, were delivered to Delta{sup 4} on two Elekta Agility matched machines. The percent dose deviation(%DDev), distance-to-agreement(DTA), and the gamma analysis(γ) were collected for all plans and the differences in measurements were tabulated between matched machines. A paired t-test analysis of the data with an alphamore » of 0.05 determines statistical significance. Power(P) was calculated to detect a difference of 5%; all data except Elekta %DDev sets were strong with above a 0.85 power. Results: The average differences for Varian machines (%DDev, DTA, and γ) are 6.4%, 1.6% and 2.7% for 6MV, respectively, and 8.0%, 0.6%, and 2.5% for 15MV. The average differences for matched Elekta machines (%DDev, DTA, and γ) are 10.2%, 0.6% and 0.9% for 6 MV, respectively, and 7.0%, 1.9%, and 2.8% for 10MV.A paired t-test shows for Varian the %DDev difference is significant for 6MV and 15MV(p-value6MV=0.019, P6MV=0.96; p-value15MV=0.0003, P15MV=0.86). Differences in DTA are insignificant for both 6MV and 15MV(p-value6MV=0.063, P6MV=1; p-value15MV=0.907, P15MV=1). Varian differences in gamma are significant for both energies(p-value6MV=0.025, P6MV=0.99; p-value15MV=0.013, P15MV=1). A paired t-test shows for Elekta the difference in %DDev is significant for 6MV but not 10MV(p-value6MV=0.00065, P6MV=0.68; p-value10MV=0.262, P10MV=0.39). Differences in DTA are statistically insignificant(p-value6MV=0.803, P6MV = 1; p-value10MV=0.269, P10MV=1). Elekta differences in gamma are significant for 10MV only(p-value6MV=0.094, P6MV=1; p-value10MV=0.011, P10MV=1). Conclusion: These results show vendor specified beam conformance across machines does not ensure equivalent patient specific QA pass rates. Gamma differences are statistically significant in three of the four comparisons for two pairs of vendor matched machines.« less
  • Purpose: This research investigates the use of Mult-ileaf Collimator (MLC) dynalog files to modify a Volumetric Arc Therapy (VMAT) DICOM Radiotherapy Treatment file from the Treatment Planning System (TPS) for quality assurance and treatment plan verification. Methods: Actual MLC positions and gantry angles where retrieved from the MLC Dynalog files of an approved and treated VMAT plan. The treatment machine used was a Novalis TX linac equipped with high definition MLC. The DICOM RT file of the plan was exported from the TPS (Eclipse, Varian Medical Systems) and the actual MLC leaf positions and gantry angles were inserted in placemore » of the planned positions for each control point. The modified DICOM RT file was then imported back into the TPS where dose calculations were performed. The resulting dose distributions were then exported to VeriSoft (PTW) where a 3D gamma was calculated using 3mm-3% and 2mm-2% criteria. A 2D gamma was also calculated using dose measurements on the Delta4 (Sandidose) phantom. Results: A 3D gamma was calculated in Verisoft at 3mm-3% of 99.5% and at 2mm-2% of 99.2%. The pretreatment verification on the Delta4 yielded a 2D gamma at 3mm-3% of 97.9% and at 2mm-2% of 88.5%. The dose volume histograms of the approved plan and the dynalog plan are virtually identical. Conclusion: Initial results show good agreement of the dynalog dose distribution with the approved plan. Future work on this research will aim to increase the number of patients and replace the planned fractionated dose per control point with the actual fractionated dose.« less
  • In this study we analyzed and compared the dose distribution of different IMRT and VMAT plans with the intent to provide pre-treatment quality assurance using two different tools. Materials/Methods: We have used the electronic portal imaging device EPID after calibration to dose and correction for the background offset signal and also the Delta4 phantom after en evaluation of angular sensitivity. The Delta4 phantom has a two-dimensional array with ionization chambers. We analyzed three plans for each anatomical site calculated by Eclipse treatment planning system. The measurements were analyzed using γ-evaluation method with passing criteria 3% absolute dose and 3 mm distancemore » to agreement (DTA). For all the plans the range of score has been from 97% to 99% for gantry fixed at 0° while for rotational planes there was a slightly decreased pass rates and above 95%. Point measurement with a ionization chamber were done in additional to see the accuracy of portal dosimetry and to evaluate the Delta4 device to various dose rates. Conclusions: Both Delt4 and Portal dosimetry shows good results between the measured and calculated doses. While Delta4 is more accurate in measurements EPID is more time efficient. We have decided to use both methods in the first steps of IMRT and VMAT implementation and later on to decide which of the tools to use depending on the complexity of plans, how much accurate we want to be and the time we have on the machine.« less
  • Purpose: The RavenQA system (LAP Laser, Germany) is a QA device with a phosphor screen detector for performing the QA tasks of TG-142. This study tested if it is feasible to use the system for the patient specific QA of the Volumetric Modulated Arc Therapy (VMAT). Methods: Water equivalent material (5cm) is attached to the front of the detector plate of the RavenQA for dosimetry purpose. Then the plate is attached to the gantry to synchronize the movement between the detector and the gantry. Since the detector moves together with gantry, The ’Reset gantry to 0’ function of the Eclipsemore » planning system (Varian, CA) is used to simulate the measurement situation when calculating dose of the detector plate. The same gantry setup is used when delivering the treatment beam for feasibility test purposes. Cumulative dose is acquired for each arc. The optical scatter component of each captured image from the CCD camera is corrected by deconvolving the 2D spatial invariant optical scatter kernel (OSK). We assume that the OSK is a 2D isotropic point spread function with inverse-squared decrease as a function of radius from the center. Results: Three cases of VMAT plans including head & neck, whole pelvis and abdomen-pelvis are tested. Setup time for measurements was less than 5 minutes. Passing rates of absolute gamma were 99.3, 98.2, 95.9 respectively for 3%/3mm criteria and 96.2, 97.1, 86.4 for 2%/2mm criteria. The abdomen-pelvis field has long treatment fields, 37cm, which are longer than the detector plate (25cm). This plan showed relatively lower passing rate than other plans. Conclusion: An algorithm for IMRT/VMAT verification using the RavenQA has been developed and tested. The model of spatially invariant OSK works well for deconvolution purpose. It is proved that the RavenQA can be used for the patient specific verification of VMAT. This work is funded in part by a Maryland Industrial Partnership Program grant to University of Maryland and to JPLC who owns the Raven technology. John Wong is a co-founder of JPLC.« less
  • Purpose: To develop a real time dose monitoring and dose reconstruction tool to identify and quantify sources of errors during patient specific volumetric modulated arc therapy (VMAT) delivery and quality assurance. Methods: The authors develop a VMAT delivery monitor tool called linac data monitor that connects to the linac in clinical mode and records, displays, and compares real time machine parameters with the planned parameters. A new measure, called integral error, keeps a running total of leaf overshoot and undershoot errors in each leaf pair, multiplied by leaf width, and the amount of time during which the error exists inmore » monitor unit delivery. Another tool reconstructs Pinnacle{sup 3} Trade-Mark-Sign format delivered plan based on the saved machine logfile and recalculates actual delivered dose in patient anatomy. Delivery characteristics of various standard fractionation and stereotactic body radiation therapy (SBRT) VMAT plans delivered on Elekta Axesse and Synergy linacs were quantified. Results: The MLC and gantry errors for all the treatment sites were 0.00 {+-} 0.59 mm and 0.05 {+-} 0.31 Degree-Sign , indicating a good MLC gain calibration. Standard fractionation plans had a larger gantry error than SBRT plans due to frequent dose rate changes. On average, the MLC errors were negligible but larger errors of up to 6 mm and 2.5 Degree-Sign were seen when dose rate varied frequently. Large gantry errors occurred during the acceleration and deceleration process, and correlated well with MLC errors (r= 0.858, p= 0.0004). PTV mean, minimum, and maximum dose discrepancies were 0.87 {+-} 0.21%, 0.99 {+-} 0.59%, and 1.18 {+-} 0.52%, respectively. The organs at risk (OAR) doses were within 2.5%, except some OARs that showed up to 5.6% discrepancy in maximum dose. Real time displayed normalized total positive integral error (normalized to the total monitor units) correlated linearly with MLC (r= 0.9279, p < 0.001) and gantry errors (r= 0.742, p= 0.005). There is a strong correlation between total integral error and PTV mean (r= 0.683, p= 0.015), minimum (r= 0.6147, p= 0.033), and maximum dose (r= 0.6038, p= 0.0376). Conclusions: Errors may exist during complex VMAT planning and delivery. Linac data monitor is capable of detecting and quantifying mechanical and dosimetric errors at various stages of planning and delivery.« less