Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Microstructure evolution of Al-doped zinc oxide and Sn-doped indium oxide deposited by radio-frequency magnetron sputtering: A comparison

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4916725· OSTI ID:22402888
; ;  [1]
  1. Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Solar Fuels, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany)
The microstructure and morphology evolution of Al-doped zinc oxide (AZO) and Sn-doped indium oxide (ITO) thin films on borosilicate glass substrates deposited by radio-frequency magnetron sputtering at room temperature (RT) and 300 °C were investigated by X-ray diffraction and atomic force microscopy (AFM). One-dimensional power spectral density (1DPSD) functions derived from the AFM profiles, which can be used to distinguish different growth mechanisms, were used to compare the microstructure scaling behavior of the thin films. The rms roughness R{sub q} evolves with film thickness as a power law, R{sub q} ∼ d{sub f}{sup β}, and different growth exponents β were found for AZO and ITO films. For AZO films, β of 1.47 and 0.56 are obtained for RT and 300 °C depositions, respectively, which are caused by the high compressive stress in the film at RT and relaxation of the stress at 300 °C. While for ITO films, β{sub 1} = 0.14 and β{sub 2} = 0.64 for RT, and β{sub 1} = 0.89 and β{sub 2} = 0.3 for 300 °C deposition are obtained, respectively, which is related to the strong competition between the surface diffusion and shadowing effect and/or grain growth. Electrical properties of both materials as a function of film thickness were also compared. By the modified Fuchs-Sondheimer model fitting of the electrical transport in both materials, different nucleation states are pointed out for both types of films.
OSTI ID:
22402888
Journal Information:
Journal of Applied Physics, Journal Name: Journal of Applied Physics Journal Issue: 15 Vol. 117; ISSN JAPIAU; ISSN 0021-8979
Country of Publication:
United States
Language:
English

Similar Records

Morphology and structure evolution of tin-doped indium oxide thin films deposited by radio-frequency magnetron sputtering: The role of the sputtering atmosphere
Journal Article · Mon Apr 21 00:00:00 EDT 2014 · Journal of Applied Physics · OSTI ID:22273551

Compositional study of vacuum annealed Al doped ZnO thin films obtained by RF magnetron sputtering
Journal Article · Thu Sep 15 00:00:00 EDT 2011 · Journal of Vacuum Science and Technology. A, International Journal Devoted to Vacuum, Surfaces, and Films · OSTI ID:22054120

Transparent conducting impurity-doped ZnO thin films prepared using oxide targets sintered by millimeter-wave heating
Journal Article · Wed Jul 15 00:00:00 EDT 2009 · Journal of Vacuum Science and Technology. A, International Journal Devoted to Vacuum, Surfaces, and Films · OSTI ID:22053488