skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interplay between strain, quantum confinement, and ferromagnetism in strained ferromagnetic semiconductor (In,Fe)As thin films

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4870970· OSTI ID:22261564
; ; ;  [1]
  1. Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

We systematically investigated the influence of strain on the electronic structure and ferromagnetism of (In,Fe)As thin films. It is found that while the shift of the critical point energies of compressive-strained (In,Fe)As layers grown on (In{sub 1−y},Ga{sub y})As (y = 0.05, 0.1) buffer layers can be explained by the hydrostatic deformation effect (HDE) alone, those of tensile-strained (In,Fe)As layers grown on (Ga{sub 1−z},Al{sub z})Sb (z = 0, 0.5, 1) buffer layers can be explained by the combination of HDE and the quantum confinement effect (QCE). The Curie temperature T{sub C} of the (In,Fe)As layers strongly depends on the strain, and shows a maximum for the (In,Fe)As layer grown on a GaSb buffer layer. The strain dependence of T{sub C} can be explained by the s-d exchange mechanism taking into account HDE and QCE.

OSTI ID:
22261564
Journal Information:
Applied Physics Letters, Vol. 104, Issue 14; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English