skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of Rh on the thermoelectric performance of the p-type Zr{sub 0.5}Hf{sub 0.5}Co{sub 1-x}Rh{sub x}Sb{sub 0.99}Sn{sub 0.01} half-Heusler alloys

Journal Article · · Journal of Solid State Chemistry
 [1]; ;  [1];  [1];  [1]
  1. Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States)

We show that Rh substitution at the Co site in Zr{sub 0.5}Hf{sub 0.5}Co{sub 1-x}Rh{sub x}Sb{sub 0.99}Sn{sub 0.01} (0<=x<=1) half-Heusler alloys strongly reduces the thermal conductivity with a simultaneous, significant improvement of the power factor of the materials. Thermoelectric properties of hot-pressed pellets of several compositions with various Rh concentrations were investigated in the temperature range from 300 to 775 K. The Rh 'free' composition shows n-type conduction, while Rh substitution at the Co site drives the system to p-type semiconducting behavior. The lattice thermal conductivity of Zr{sub 0.5}Hf{sub 0.5}Co{sub 1-x}Rh{sub x}Sb{sub 0.99}Sn{sub 0.01} alloys rapidly decreased with increasing Rh concentration and lattice thermal conductivity as low as 3.7 W/m*K was obtained at 300 K for Zr{sub 0.5}Hf{sub 0.5}RhSb{sub 0.99}Sn{sub 0.01}. The drastic reduction of the lattice thermal conductivity is attributed to mass fluctuation induced by the Rh substitution at the Co site, as well as enhanced phonon scattering at grain boundaries due to the small grain size of the synthesized materials. - Graphical abstract: Significant reduction of the lattice thermal conductivity with increasing Rh concentration in the p-type Zr{sub 0.5}Hf{sub 0.5}Co{sub 1-x}Rh{sub x}Sb{sub 0.99}Sn{sub 0.01} half-Heusler materials prepared by solid state reaction at 1173 K.

OSTI ID:
21372600
Journal Information:
Journal of Solid State Chemistry, Vol. 183, Issue 5; Other Information: DOI: 10.1016/j.jssc.2010.03.023; PII: S0022-4596(10)00113-1; Copyright (c) 2010 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; ISSN 0022-4596
Country of Publication:
United States
Language:
English