Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Detection of Cs{sub 2}Ge{sup +} clusters for the quantification of germanium atoms by secondary ion mass spectrometry: Application to the characterization of Si{sub 1-x}Ge{sub x} layers (0{<=}x{<=}1) and germanium diffusion in silicon

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.2786037· OSTI ID:21062142
We have studied the matrix effects in Si{sub 1-x}Ge{sub x} structures under O{sub 2}{sup +} and Cs{sup +} bombardments. Matrix effects are practically suppressed with Cs{sub 2}Ge{sup +} secondary ions, for Ge concentrations between 0 and 100 at. %. A procedure for the accurate quantification of the Ge concentration in Si{sub 1-x}Ge{sub x} alloys using Cs{sub 2}Ge{sup +} and CsGe{sup +} clusters has been proposed. For structures in which the Ge content is constant over several hundreds of nanometers, both methods provide very similar results, with an excellent agreement between the Ge concentrations measured by secondary ions mass spectrometry and x-ray diffraction. However, for continuously varying Ge concentration profiles, the nonlinear response of the CsGe{sup +} normalized intensity and the persistence of strong matrix effects for CsSi{sup +} ions lead to differences between the Ge concentration profiles measured with the CsGe{sup +} method compared to the Cs{sub 2}Ge{sup +} one. The latter is therefore the only reliable method for the study of Ge indiffusion into Si from a pure Ge layer grown by chemical vapor deposition. An application of this method to the analysis of Ge indiffusion in Si at 900 deg. C is also reported.
OSTI ID:
21062142
Journal Information:
Journal of Applied Physics, Journal Name: Journal of Applied Physics Journal Issue: 7 Vol. 102; ISSN JAPIAU; ISSN 0021-8979
Country of Publication:
United States
Language:
English