Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Thermoelectric properties of Ag-doped n-type (Bi{sub 2}Te{sub 3}){sub 0.9}-(Bi{sub 2-} {sub x} Ag {sub x} Se{sub 3}){sub 0.1} (x=0-0.4) alloys prepared by spark plasma sintering

Journal Article · · Journal of Solid State Chemistry
 [1];  [1];  [2];  [2];  [3]
  1. School of Mechanical Engineering, Ningbo University of Technology, Ningbo 315016 (China)
  2. School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221008 (China)
  3. College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014 (China)

Ag-doped n-type (Bi{sub 2}Te{sub 3}){sub 0.9}-(Bi{sub 2-} {sub x} Ag {sub x} Se{sub 3}){sub 0.1} (x=0-0.4) alloys were prepared by spark plasma sintering and their physical properties evaluated. When at low Ag content (x=0.05), the temperature dependence of the lattice thermal conductivity follows the trend of (Bi{sub 2}Te{sub 3}){sub 0.9}-(Bi{sub 2}Se{sub 3}){sub 0.1}; while at higher Ag content, a relatively rapid reduction above 400 K can be observed due possibly to the enhancement of scattering of phonons by the increased defects. The Seebeck coefficient increases with Ag content, with some loss of electrical conductivity, but the maximum dimensionless figure of merit ZT can be obtained to be 0.86 for the alloy with x=0.4 at 505 K, about 0.2 higher than that of the alloy (Bi{sub 2}Te{sub 3}){sub 0.9}-(Bi{sub 2}Se{sub 3}){sub 0.1} without Ag-doping. - Graphical abstract: The temperature dependence of dimensionless thermoelectric figure of merit ZT for different (Bi{sub 2}Te{sub 3}){sub 0.9}-(Bi{sub 2-} {sub x} Ag {sub x} Se{sub 3}){sub 0.1} (x=0-0.4) alloys prepared by spark plasma sintering.

OSTI ID:
21015759
Journal Information:
Journal of Solid State Chemistry, Journal Name: Journal of Solid State Chemistry Journal Issue: 3 Vol. 180; ISSN 0022-4596; ISSN JSSCBI
Country of Publication:
United States
Language:
English