Thermoelectric properties of p-type pseudo-binary (Ag{sub 0.365}Sb{sub 0.558}Te) {sub x} -(Bi{sub 0.5}Sb{sub 1.5}Te{sub 3}){sub 1-} {sub x} (x=0-1.0) alloys prepared by spark plasma sintering
- School of Mechanical Engineering, Ningbo University of Technology, Ningbo 315016 (China)
- School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221008 (China)
In this paper, pseudo-binary (Ag{sub 0.365}Sb{sub 0.558}Te) {sub x} -(Bi{sub 0.5}Sb{sub 1.5}Te{sub 3}){sub 1-} {sub x} (x=0-1.0) alloys were prepared using spark plasma sintering technique, and the composition-dependent thermoelectric properties were evaluated. Electrical conductivities range from 7.9x10{sup 4} to 15.6x10{sup 4} {omega}{sup -1} m{sup -1} at temperatures of 507 and 318 K, respectively, being about 3.0 and 8.5 times those of Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} alloy at the corresponding temperatures. The optimal dimensionless figure of merit (ZT) of the sample with molar fraction x=0.025 reaches 1.1 at 478 K, whereas that of the ternary Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} alloy is 0.58 near room temperature. The results also reveal that a direct introduction of Ag{sub 0.365}Sb{sub 0.558}Te in the Bi-Sb-Te system is much more effective to the property improvement than naturally precipitated Ag{sub 0.365}Sb{sub 0.558}Te in the Ag-doped Ag-Bi-Sb-Te system. - Graphical abstract: The temperature dependence of the dimensionless thermoelectric figure of merit ZT for different (Ag{sub 0.365}Sb{sub 0.558}Te) {sub x} -(Bi{sub 0.5}Sb{sub 1.5}Te{sub 3}){sub 1-} {sub x} (x=0-1.0) alloys prepared by spark plasma sintering.
- OSTI ID:
- 20900915
- Journal Information:
- Journal of Solid State Chemistry, Journal Name: Journal of Solid State Chemistry Journal Issue: 12 Vol. 179; ISSN 0022-4596; ISSN JSSCBI
- Country of Publication:
- United States
- Language:
- English
Similar Records
Thermoelectric properties of Bi{sub 2}Te{sub 3}, Sb{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} single crystals with magnetic impurities
Composites of Bi{sub 2-x}Sb{sub x}Te{sub 3} nanocrystals and fullerene molecules for thermoelectricity