Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

The influence of surface roughness on the electric conduction process in amorphous Ta{sub 2}O{sub 5} thin films

Journal Article · · Journal of the Electrochemical Society
DOI:https://doi.org/10.1149/1.1392485· OSTI ID:20003179

Amorphous Ta{sub 2}O{sub 5} thin films were deposited by radio-frequency magnetron sputtering at the substrate temperatures of 100, 200, and 300 C, respectively. The electrical properties of Ta{sub 2}O{sub 5} thin films were investigated as a function of substrate temperature and film thickness. The leakage current of the Ta{sub 2}O{sub 5} films was in the order of 10{sup {minus}5} to 10{sup {minus}6} A/cm{sup 2} for an applied field of 1 MV/cm. The charge storage capacitances ({epsilon}E{sub breakdown}) were 7.7 (100 C), 7.9 (200 C), and 3.7 (300 C) {micro}C/cm{sup 2}. Most of the electrical analyses were performed with the data obtained for the Ta{sub 2}O{sub 5} thin films deposited at 200 C substrate temperature because they showed optimum electrical properties. The dominant conduction mechanism changed from Schottky emission current at low field to Poole-Frankel current at the high field. With increasing film thickness, the surface roughness increased, whereas the transition fields from the electrode-limited current to the bulk-limited current process decreased. To verify the effect of this surface roughness on the electrical conduction mechanism, a two-dimensional numerical simulator, MEDICI, was used to simulate the electric field distribution at the bulk region of the thin film and the interface region between the thin film and electrode.

Research Organization:
Korea Univ., Seoul (KR)
OSTI ID:
20003179
Journal Information:
Journal of the Electrochemical Society, Journal Name: Journal of the Electrochemical Society Journal Issue: 9 Vol. 146; ISSN JESOAN
Country of Publication:
United States
Language:
English